Skip to main content
Log in

Optimization of an anode for arsenic(V) extraction

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical methods has led to the preparation of a poly(pyrrole)-modified steel electrode (SS/PPy) for testing and optimizing the polymer doping/undoping process for arsenic(V) removal. Potentiodynamic (cyclic voltammetry) electropolymerization optimal range was between −0.200 and 0.980 V vs SCE. On the other hand, the potentiostatic optimal working potential was 0.980 V. SS/PPy-modified electrode prepared under either of these optimum conditions displayed a doping/undoping process occurring at 0.700 and −0.200 V, respectively. Hence, As(V) extraction or removal was performed by incorporating the cation to SS/PPy applying a 0.700 V constant potential. Then, As(V) doped SS/PPy was transferred to another cell, in which the undoping potential (−0.200 V) was applied to remove the ion from the polymer matrix, completing thus the extraction cycle (EC). This way, for instance, with a SS of 10 cm2 geometric area and potentiostatic deposition carried out for 10 min, arsenic removal rates over 77 % were attained for 10 EC of 60 s each. This outcome allows predicting a promising future for the method as As(V) extractor from aqueous solutions. Furthermore, the modified electrode exhibited acceptable conditions for developing a likely arsenic sensor, since a linear current vs As(V) concentration relationship exits, at least in the order of concentrations used herein (50–500 ppm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jörg M (2000) Sci Total Environ 249:297

    Article  Google Scholar 

  2. Duker AA, Carranza EJM, Hale M (2005) Environ Int 31:631

    Article  CAS  Google Scholar 

  3. Rodriguez VM, Jimenez-Capdeville ME, Giordano M (2003) Toxicol Lett 145:1

    Article  CAS  Google Scholar 

  4. Sorlini S, Gialdini F (2010) Water Res 44:5653

    Article  CAS  Google Scholar 

  5. Sánchez JA, Rivas BL, Pooley SA, Basaez L, Pereira E, Pignot-Paintrand I, Bucher C, Royal G, Saint-Aman E, Moutet J-C (2010) Electrochim Acta 55:4876

    Article  Google Scholar 

  6. Rivas BL, Aguirre MdC, Pereira E, Bucher C, Royal G, Limosin D, Aman ES, Moutet J-C (2009) Water Res 43:515

    Article  CAS  Google Scholar 

  7. Rivas BL, Aguirre MdC, Pereira E, Bucher C, Moutet J-C, Aman ES, Royal G (2011) Polym Adv Technol 22:414

    Article  CAS  Google Scholar 

  8. Song S, Lopez-Valdivieso A, Hernandez-Campos DJ, Peng C, Monroy-Fernandez MG, Razo-Soto I (2006) Water Res 40:364

    Article  CAS  Google Scholar 

  9. Bilici-Baskan M, Pala A (2010) Desalination 254:42

    Article  CAS  Google Scholar 

  10. del Valle MA, Gacitua MA, Borrego ED, Zamora PP, Diaz FR, Camarada MB, Antilen M, Soto JP (2012) Int J Electrochem Sci 7:2552

    Google Scholar 

  11. del Valle MA, Diaz FR, Torres JL, Zamora PP, Godoy MA, Bernede JC (2010) J Appl Polym Sci 115:107

    Article  Google Scholar 

  12. Miller LL, Zinger B, Zhou QX (1987) J Am Chem Soc 109:2267

    Article  CAS  Google Scholar 

  13. Zinger B, Miller LL (1984) J Am Chem Soc 106:6861

    Article  CAS  Google Scholar 

  14. del Valle MA, Santander RA, Diaz FR, Faundez M, Gacitua M, Antilen M, Hernandez LA (2011) Int J Electrochem Sci 6:6105

    Google Scholar 

  15. del Valle MA, Soto GM, Guerra L, Velez JH, Diaz FR (2004) Polym Bull 51:301

    Article  Google Scholar 

  16. Diaz FR, del Valle MA, Brovelli F, Tagle LH, Bernede JC (2003) J Appl Polym Sci 89:1614

    Article  CAS  Google Scholar 

  17. East GA, del Valle MA (2000) J Chem Edu 77:97

    Article  CAS  Google Scholar 

  18. Antilen M, Gonzalez MA, Perez-Ponce M, Gacitua M, del Valle MA, Armijo F, Del Río R, Ramírez G (2011) Int J Electrochem Sci 6:901

    CAS  Google Scholar 

  19. Liu E, Wang J, Li J, Shi C, He C, Du X, Zhao N (2011) Int J Hydrogen Energy 36:6739

    Article  CAS  Google Scholar 

  20. Shiu KK, Song FY, Lau KW (1999) J Electroanal Chem 476:109

    Article  CAS  Google Scholar 

  21. Chen FE, Shi G, Fu M, Qu L, Hong X (2003) Synth Met 132:125

    Article  CAS  Google Scholar 

  22. Yang KH, Liu YC, Yu CC (2009) Anal Chim Acta 631:40

    Article  CAS  Google Scholar 

  23. del Valle MA, Diaz FR, Bodini ME, Alfonso G, Soto GM, Borrego ED (2005) Polym Int 54:526

    Article  Google Scholar 

  24. Antilen M, Armijo F (2009) J Appl Polym Sci 113:3619

    Article  CAS  Google Scholar 

  25. Arteaga GC, del Valle MA, Antilen M, Faundez M, Gacitua MA, Diaz FR, Bernede JC, Cattin L (2011) Int J Electrochem Sci 6:5209

    CAS  Google Scholar 

  26. Pirvu C, Manole CC, Stoian AB, Demetrescu I (2011) Electrochim Acta 56:9893

    Article  CAS  Google Scholar 

  27. Tezuka Y, Kimura T, Ishii T, Aoki K (1995) J Electroanal Chem 395:51

    Article  Google Scholar 

  28. Careem MA, Velmurugu Y, Skaarup S, West K (2006) J Power Sources 159:210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from FONDECYT through project 1100055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Angelica del Valle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Valle, M.A., Colomer, D., Diaz, F.R. et al. Optimization of an anode for arsenic(V) extraction. J Appl Electrochem 42, 867–874 (2012). https://doi.org/10.1007/s10800-012-0460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0460-y

Keywords

Navigation