Skip to main content
Log in

Studies on the oxidation rate of metallic inert anodes by measuring the oxygen evolved in low-temperature aluminium electrolysis

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The rate of oxygen evolution on metallic inert anodes was measured as a function of current density during electrolysis of a low-melting NaF(12)–KF–AlF3 bath ([NaF + KF]/[AlF3] = 1.5 mol mol−1) at 800 °C. The oxidation rate of the anode substrate (A cm−2) was calculated. The anode oxidation process was depressed at the potentials of oxygen evolution. The dynamics of the decrease in the oxidation rate, which were obtained in previous study by the change in geometrical size of the metallic part of the specimen, was reproduced both by the technique proposed and also in potentiostatic electrolysis at potentials below that of oxygen evolution, in some cases, depending on prepolarisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kovrov VA, Khramov AP, Redkin AA, Zaikov YP (2008) Oxygen evolving anodes for aluminum electrolysis. In: Electrodes for Industrial Electrochemistry—214th ECS Meeting, Honolulu, HI, United States, 12–17 October 2008

  2. Kovrov VA, Khramov AP, Shurov NI, Zaikov Yu P (2010) Russ J Electrochem (Engl Transl) 46(6):665–670

    CAS  Google Scholar 

  3. Beck TR, MacRae CM, Wilson NC (2011) Metal anode performance in low-temperature electrolytes for aluminum production. Metall Mater Trans B. doi:10.1007/s11663-011-9511-8

  4. Sekhar JA, Liu J, Deng H et al (1998) Graded non-consumable anode materials. In: Welch B (ed) Light metals. TMS, Warrendale, pp 597–603

    Google Scholar 

  5. Shi Z, Xu J, Qiu Z et al (2003) JOM J Min Met Mater 55:63–65

    CAS  Google Scholar 

  6. Shi Z, Zhao X, Xu J et al (2008) Anti-oxidation properties of iron-nickel alloys at 800–900 °C. In: DeYoung DH (ed) Light metals. TMS, Warrendale, pp 1051–1054

    Google Scholar 

  7. Helle S, Davis B, Guay D, Roue L (2010) J Electrochem Soc 157:E173–E179

    Article  CAS  Google Scholar 

  8. Chapman V et al (2011) High temperature oxidation behaviour of Ni–Fe–Co anodes for aluminium electrolysis. Corros Sci. doi:10.1016/j.corsci.2011.05.018

  9. Filatov AY, Antipov EV, Borzenko MI et al (2008) Protect Metals (Engl Transl) 44(6):627–631

    Article  CAS  Google Scholar 

  10. Cassayre L, Chamelot P, Arurault L, Massot L, Palau P, Taxil P (2007) Corros Sci 49:3610–3625

    Article  CAS  Google Scholar 

  11. Yang J, Hryn JN, Krumdick GK (2006) In: Galloway TJ (ed) Light Metals. TMS, Warrendale, pp 421–424

  12. Apisarov A, Dedyukhin A, Nikolaeva E, Tinghaev P, Tkacheva O, Redkin A, Zaikov Y (2011) Metall Mater Trans B 42:236–242

    Google Scholar 

  13. Apisarov AP, Dedyukhin AE, Red’kin AA, Tkacheva OY, Zaikov YP (2010) Russ J Electrochem (Engl Transl) 46(6):633–639

    CAS  Google Scholar 

  14. Zajkov JP, Suzdal’tsev AV, Khramov AP, Kovrov VA (2007) Pat. RU2368707C2

  15. Wagman DD, Evans WH, Parker VB et al (1982) The NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data 11(Suppl 2):399

    Google Scholar 

  16. Glushko VP (ed) (1978–1982) Thermodynamic properties of individual substances, vol 1–4. Science Press, Moscow

Download references

Acknowledgements

This study was financially supported by the Program of the Ural Division of the Russian Academy of Sciences. The authors thank V. M. Chumarev for providing the alloys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kovrov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovrov, V.A., Khramov, A.P., Zaikov, Y.P. et al. Studies on the oxidation rate of metallic inert anodes by measuring the oxygen evolved in low-temperature aluminium electrolysis. J Appl Electrochem 41, 1301–1309 (2011). https://doi.org/10.1007/s10800-011-0345-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0345-5

Keywords

Navigation