Skip to main content
Log in

Sulfuric acid–methanol electrolytes as an alternative to sulfuric–hydrofluoric acid mixtures for electropolishing of niobium

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Attainment of the greatest possible interior surface smoothness is critical to meeting the performance demands placed upon niobium superconducting radiofrequency (SRF) accelerator cavities by next generation projects. Electropolishing with HF–H2SO4 electrolytes yields cavities that meet SRF performance goals, but a less-hazardous, more environmentally-friendly process is desirable. Reported studies of EP on chemically-similar tantalum describe the use of sulfuric acid–methanol electrolytes as an HF-free alternative. Reported here are the results of experiments on niobium samples with this electrolyte. Voltammetry experiments indicate a current plateau whose voltage range expands with increasing acid concentration and decreasing temperature. Impedance spectroscopy indicates that a compact salt film is responsible for the current plateau. Equivalent findings in electropolishing chemically-similar tantalum with this electrolyte were interpreted due to as mass transfer limitation by diffusion of Ta ions away from the anode surface. We infer that a similar mechanism is at work here. Conditions were found that yield leveling and brightening comparable to that obtained with HF–H2SO4 mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Padamsee H, Knobloch J, Hays T (2008) RF superconductivity for accelerators, 2nd edn. Wiley, New York

    Google Scholar 

  2. Padamsee H (2009) RF superconductivity: science, technology and applications. Wiley, Weinheim

    Google Scholar 

  3. Knobloch J, Geng RL, Liepe M, Padamsee H (1999) In: Proc. 9th workshop on RF superconductivity, Ithaca

  4. Saito K (2003) SRF2003 http://srf2003.desy.de/fap/paper/ThP15.pdf

  5. Shemelin V, Padamsee H (2008) TTC Report 2008-07 TESLA

  6. Tian H, Reece C, Kelley M, Wang S, Plucinski L, Smith K (2006) Appl Surf Sci 253:1236

    Article  CAS  Google Scholar 

  7. Diepers H, Schmidt O, Martens H, Sun FS (1971) Phys Lett 37A:139

    Google Scholar 

  8. Saito K, Kojima Y, Furuya T, Mitsunobu S, Noguchi S, Hosoyama K, Nakazato T, Tajima T, Asano K, Inoue K, Iino Y, Nomura H, Takeuchi K, (1989) In: Proc. 4th workshop on RF superconductivity 2 KEK, Tsukuba

  9. Geng, Crawford AC, Padamsee H, Seaman A (2005) In: Proc. 9th workshop on RF superconductivity, Ithaca

  10. Padamsee H, Crawford AC, Favale A, Cole M, Rathke J, Pekeler M, Ashmanskas W (2007) In: Proc. PAC 07, Albuquerque

  11. Tian H, Kelley M, Reece C, Corcoran S (2008) J Electrochem Soc 155:D563

    Article  CAS  Google Scholar 

  12. Landolt D (1987) Electrochim Acta 32:1

    Article  CAS  Google Scholar 

  13. Matlosz M (1995) Electrochim Acta 40:393

    Article  CAS  Google Scholar 

  14. Piotrowski O, Madore C, Landolt D (1999) Electrochim Acta 44:3389

    Article  CAS  Google Scholar 

  15. Palmieri V, Mondin G, Rampazzo V, Rizzetto D, Rupp V, Stivanello S, Deambrosis S, Rossi AA (2009) In: Proc. SRF 2009, Berlin, THOAAU03

  16. Schober T, Sorajic V (1973) Metallography 6:183

    Article  CAS  Google Scholar 

  17. Piotrowski O, Madore C, Landolt D (1998) Plat Surf Finish 85:115

    CAS  Google Scholar 

  18. Lupton D, Aldinger F, Schulse K (1981) In: Niobium: Proc Intl Symp 1981, San Francisco

  19. Piotrowski O, Madore C, Landolt D (1998) J Electrochem Soc 145:2362

    Article  CAS  Google Scholar 

  20. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, Hoboken

    Book  Google Scholar 

  21. Grimm R, Landolt D (1994) Corros Sci 36:1847

    Article  CAS  Google Scholar 

  22. Goldstein J, Newbury D, Joy D, Lyman C, Echlin P, Lifshin E, Sawyer L, Michael J (2007) Scanning electron microscopy and x-ray microanalysis, 3rd edn. Springer, New York

    Google Scholar 

  23. Verhoeven JD (1986) ASM handbook, vol 10, p 490. ASM International, Materials Park, OH, USA

  24. Chauvy PF, Madore C, Landolt D (1998) Surf Coat Technol 110:48

    Article  CAS  Google Scholar 

  25. Tian H, Ribeill G, Reece C, Kelley M (2011) Appl Surf Sci 257:4781

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by the US Department of Energy under grant DE-FG02-06ER41434 to Virginia Tech. We thank the SRF Institute at Jefferson Lab for providing the niobium rods, and niobium specimens treated by fluoride-based EP and by BCP. We thank the Nanoscale Characterization and Fabrication Laboratory at Virginia Tech for assistance with scanning electron microscopy, stylus profilometry and x-ray photoelectron spectroscopy. We thank Olga Trofimova of the College of William and Mary for assistance with atomic force microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Kelley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Corcoran, S.G. & Kelley, M.J. Sulfuric acid–methanol electrolytes as an alternative to sulfuric–hydrofluoric acid mixtures for electropolishing of niobium. J Appl Electrochem 41, 633–643 (2011). https://doi.org/10.1007/s10800-011-0276-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0276-1

Keywords

Navigation