Skip to main content
Log in

Poly(2,5-dimercapto-1,3,4-thiadiazole)/sulfonated graphene composite as cathode material for rechargeable lithium batteries

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Poly(2,5-dimercapto-1,3,4-thiadiazole) (PDMcT)/sulfonated graphene conductive composite (PDMcT/SGS) was synthesized through in situ oxidative polymerization in the presence of the water-soluble sulfonated graphene sheets (SGS). Raman spectra revealed the existence of the π–π interaction between thiadiazole rings and basal planes of SGS. Scanning electron microscopy and transmission electron microscopy showed that the submicron-sized petals and nanofibers of PDMcT grew onto the surface of SGS. As evidenced by the cyclic voltammetry results, the incorporation of SGS has significantly improved the electrochemical activity and cyclability of PDMcT. The discharge capacity of PDMcT/SGS composite, measured with the charge–discharge tests, was 268 mAh g−1 at the first cycle and 124 mAh g−1 after 10 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Visco SJ, De Jonghe LC (1988) J Electrochem Soc 135:2905

    Article  CAS  Google Scholar 

  2. Oyama N, Tatsuma T, Sato T, Sotomura T (1995) Nature 373:598

    Article  CAS  Google Scholar 

  3. Tsutsumi H, Oyari Y, Onimura K, Oishi T (2001) J Power Sources 92:228

    Article  CAS  Google Scholar 

  4. Wang J, Yang J, Xie J, Xu N (2002) Adv Mater 14:963

    CAS  Google Scholar 

  5. Xue L, Li J, Hu S, Zhang M, Zhou Y, Zhan C (2003) Electrochem Commun 5:903

    Article  CAS  Google Scholar 

  6. Deng S, Kong L, Hu G, Wu T, Li D, Zhou Y, Li Z (2006) Electrochim Acta 51:2589

    Article  CAS  Google Scholar 

  7. Amaike M, Iihama T (2006) Synth Met 156:239

    Article  CAS  Google Scholar 

  8. Su Y, Dong W, Zhang J, Song J, Zhang Y, Gong K (2007) Polymer 48:165

    Article  CAS  Google Scholar 

  9. Visco SJ, Mailhe CC, De Jonghe LC, Armand MB (1989) J Electrochem Soc 136:661

    Article  CAS  Google Scholar 

  10. Naoi K, Kawase K, Inoue Y (1997) J Electrochem Soc 144:L173

    Article  CAS  Google Scholar 

  11. Liu M, Visco SJ, De Jonghe LC (1990) J Electrochem Soc 137:750

    Article  CAS  Google Scholar 

  12. Naoi K, Menda M, Ooike H, Oyama N (1991) J Electroanal Chem 318:395

    Article  CAS  Google Scholar 

  13. Yu L, Wang X, Li J, Jing X, Wang F (1998) J Power Sources 73:261

    Article  CAS  Google Scholar 

  14. Li J, Zhan H, Zhou Y (2003) Electrochem Commun 5:555

    Article  CAS  Google Scholar 

  15. Shu D, Zhang J, He C, Meng Y, Chen H, Zhang Y, Zheng M (2006) J Appl Electrochem 36:1427

    Article  CAS  Google Scholar 

  16. Kiya Y, Iwata A, Sarukawa T, Henderson JC, Abruña HD (2007) J Power Sources 173:522

    Article  CAS  Google Scholar 

  17. Park JE, Park SG, Koukitu A (2003) J Electrochem Soc 150:A959

    Article  CAS  Google Scholar 

  18. Park JE, Hatozaki O, Oyama N (2003) Chem Lett 32:138

    Article  CAS  Google Scholar 

  19. Park JE, Park SG, Koukitu A (2004) Synth Met 140:121

    Article  CAS  Google Scholar 

  20. Canobre SC, Davoglio RA, Biaggio SR, Rocha-Filho RC, Bocchi N (2006) J Power Sources 154:281

    Article  CAS  Google Scholar 

  21. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  22. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  23. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282

    Article  CAS  Google Scholar 

  24. Wang D, Li F, Zhao J, Ren W, Chen Z, Tan J, Wu ZS, Gentle I, Lu G, Cheng H (2009) ACS Nano 3:1745

    Article  CAS  Google Scholar 

  25. Hong W, Xu Y, Lu G, Li C, Shi G (2008) Electrochem Commun 10:1555

    Article  CAS  Google Scholar 

  26. Watcharotone S, Dikin DA, Stankovich S, Piner R, Jung I, Dommett GHB, Evmenenko G, Wu S, Chen S, Liu C, Nguyen ST, Ruoff RS (2007) Nano Lett 7:1888

    Article  CAS  Google Scholar 

  27. Wang X, Zhi L, Tsao N, Tomovic Z, Li J, Mullen K (2008) Angew Chem Int Ed 47:2990

    Article  CAS  Google Scholar 

  28. Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai F, Zhang C, Gao H, Chen Y (2009) Carbon 47:922

    Article  CAS  Google Scholar 

  29. Park N, Hong S, Kim G, Jhi SH (2007) J Am Chem Soc 129:8999

    Article  CAS  Google Scholar 

  30. Raghu AV, Lee YR, Jeong HM, Shin CM (2008) Macromol Chem Phys 209:2487

    Article  CAS  Google Scholar 

  31. Ansari S, Giannelis EP (2009) J Polym Sci Part B 47:888

    Article  CAS  Google Scholar 

  32. Du X, Yu Z, Dasari A, Jun M, Mo M, Meng Y, Mai Y (2008) Chem Mater 20:2066

    Article  CAS  Google Scholar 

  33. Si Y, Samulski ET (2008) Nano Lett 6:1679

    Article  Google Scholar 

  34. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101

    Article  CAS  Google Scholar 

  35. Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) J Mater Chem 16:155

    Article  CAS  Google Scholar 

  36. Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Chem Commun 1667

  37. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  38. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558

    Article  CAS  Google Scholar 

  39. Shen J, Hu Y, Li C, Qin C, Ye M (2009) Small 5:82

    Article  CAS  Google Scholar 

  40. Doeff MM, Visco SJ, De Jonghe LC (1992) J Electrochem Soc 139:1808

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the financial supports of National Natural Science Foundation of China (50773020, 21044005), Innovation Program of Shanghai Municipal Education Commission (11ZZ55), Shanghai Municipal Science and Technology Commission (0852nm02000), Shanghai Leading Academic Discipline Project (B502) and Shanghai Key Laboratory Project (08DZ2230500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengchao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, L., Wang, G., Li, X. et al. Poly(2,5-dimercapto-1,3,4-thiadiazole)/sulfonated graphene composite as cathode material for rechargeable lithium batteries. J Appl Electrochem 41, 377–382 (2011). https://doi.org/10.1007/s10800-010-0246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0246-z

Keywords

Navigation