Skip to main content
Log in

Electroxidation of oxalic acid at different electrode materials

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Oxalic acid is one of the proposed metabolites of the anodic oxidation of more complex organic molecules. In spite of its simple structure, its mineralization strongly depends on the nature of the electrode material at which the process is carried out. Sargisyan and Vasil’ev (Elektrokhimiya 18:845, 1982) pointed out such dependence, investigating the kinetic behavior of OA at different metal (Rh, Pd, Os, Ir, Pt and Au), at dimensionally stable anodes (RuO2–TiO2) and at glassy carbon (GC) electrodes. Their conclusions highlighted the important role played by the organic anion adsorption step, claiming that OA is oxidized with increasing difficulty at electrode materials having higher oxygen affinity. More recently, these assumptions have been supported by data on OA oxidation at high anodic potentials (Martínez-Huitle et al., Electrochim Acta 49:4027, 2004). To further enrich the picture, in the present paper, kinetic investigations were carried out at different mixed-oxides, Pt, GC and highly conductive, boron-doped diamond (BDD) electrodes, with either oxygen or fluorine at their surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sargisyan SA, Vasil’ev YuB (1982) Elektrokhimiya 18:845

    CAS  Google Scholar 

  2. Martínez-Huitle CA, Ferro S, De Battisti A (2004) Electrochim Acta 49:4027

    Article  Google Scholar 

  3. Smirnova NV, Tsirlina GA, Pron’kin SN, Petrii OA (1999) Russ J Electrochem 35:113

    CAS  Google Scholar 

  4. Giner J (1961) Electrochim Acta 4:42

    Article  CAS  Google Scholar 

  5. El Wakkad SES, Khalafalla SE, Shams El Din AM (1958) Egypt J Chem 1:23

    Google Scholar 

  6. Johnson JW, Wroblowa H, Bockris JO’M (1964) Electrochim Acta 9:639

    Article  CAS  Google Scholar 

  7. Johnson JW, Mueller SC, James WJ (1971) Trans Faraday Soc 67:2167

    Article  CAS  Google Scholar 

  8. Horanyi G (1974) J Electroanal Chem 51:163

    Article  CAS  Google Scholar 

  9. Inzelt G, Szetey E (1981) Acta Chim Acad Sci Hung 3:269

    Google Scholar 

  10. YuB Vasil’ev, Sargisyan SA (1986) Electrochim Acta 31:645

    Article  Google Scholar 

  11. Chollier-Brym MJ, Epron F, Lamy-Pitara E, Barbier J (1999) Catal Today 48:291

    Article  Google Scholar 

  12. Gandini D, Mahé E, Michaud P-A, Haenni W, Perret A, Comninellis Ch (2000) J Appl Electrochem 30:1345

    Article  CAS  Google Scholar 

  13. Sargisyan SA, Vasil’ev YuB (1982) Elektrokhimiya 18:954

    CAS  Google Scholar 

  14. Chollier-Brym MJ, Epron F, Lamy-Pitara E, Barbier J (1999) J Electroanal Chem 474:147

    Article  CAS  Google Scholar 

  15. Sargisyan SA, Vasil’ev YuB (1982) Elektrokhimiya 18:961

    CAS  Google Scholar 

  16. Horanyi G, Hegedüs D, Rizmayer EM (1972) J Electroanal Chem 40:393

    Article  CAS  Google Scholar 

  17. Pron’kin SN, Petrii OA, Tsirlina GA, Schiffrin DJ (2000) J Electroanal Chem 480:112

    Article  Google Scholar 

  18. Horanyi G, Vertes G, Hegedüs D (1973) Acta Chim Hung 79:301

    Google Scholar 

  19. Smirnova NV, Petrii OA, Grzejdziak A (1988) J Electroanal Chem 251:73

    Article  CAS  Google Scholar 

  20. Orts JM, Feliu JM, Aldaz A, Clavilier J, Rodes A (1990) J Electroanal Chem 281:73

    Article  Google Scholar 

  21. Orts JM, Feliu JM, Aldaz A, Clavilier J, Rodes A (1990) J Electroanal Chem 281:199

    Article  CAS  Google Scholar 

  22. Horanyi G (1980) Electrochim Acta 25:43

    Article  CAS  Google Scholar 

  23. Horanyi G, Rizmayer EM, Inzelt G (1978) J Electroanal Chem 93:183

    Article  CAS  Google Scholar 

  24. Casella IG (1999) Electrochim Acta 44:3353

    Article  CAS  Google Scholar 

  25. Morozova NB, Shcheblykina GE, Vvedenskii AV (1999) Russ J Electrochem 35:310

    CAS  Google Scholar 

  26. Albalat R, Gomez E, Sarret M, Valles E (1989) Monatsh Chem 120:651

    Article  CAS  Google Scholar 

  27. Alaune Z, Mazeikiene R (1987) Liet TSR Mokslu Akad Darb Ser B 2:11

    Google Scholar 

  28. Bock C, Smith A, MacDougall B (2002) Electrochim Acta 48:57

    Article  CAS  Google Scholar 

  29. Obmornov EV, Karetnik VG, Koptelov VI, Dosovitskaya NA, Koptelova ZP, Masalova GP, Dosovitskii EI, Ostrovskaya VN (1967) GB Patent 1,095,100; (1970) US Patent 3,531,520

  30. Obmornov EV, Karetnik VG, Koptelov VI, Dosovitskaya NA, Koptelova ZP, Masalova GP, Dosovitskii EI, Ostrovskaya VN (1970) US Patent 3,531,520

  31. Pogodin VA, Kaverin NI, Krutova VP, Brazhnikov VA (1993) SU Patent 1,806,127

  32. Stucki S, Koetz R, Carcer B, Suter W (1991) J Appl Electrochem 21:99

    Article  CAS  Google Scholar 

  33. Scialdone O, Randazzo S, Galia A, Filardo G (2009) Electrochim Acta 54:1210

    Article  CAS  Google Scholar 

  34. Martinez-Huitle CA, Ferro S (2006) Chem Soc Rev 35:1324

    Article  CAS  Google Scholar 

  35. Ferro S, De Battisti A (2003) J Phys Chem B 107:7567

    Article  CAS  Google Scholar 

  36. Ferro S, Dal Colle M, De Battisti A (2005) Carbon 43:1191

    Article  CAS  Google Scholar 

  37. Morozov A, Ferro S, Martelli GN, De Battisti A (2005) WO 2005/014885, A1

  38. Konoshita K (1982) In: Conway BE, Bockris JO’M, White RE (eds) Modern aspects of electrochemistry, vol 14. Plenum Press, New York, p 557

  39. Murakami Y, Ohkawauchi H, Ito M, Yahikozawa K, Takasu Y (1994) Electrochim Acta 39:2551

    Article  CAS  Google Scholar 

  40. Duo I, Fujishima A, Ch Comninellis (2003) Electrochem Comm 5:695

    Article  CAS  Google Scholar 

  41. Gialdini C (1910) Gaz Chim Ital 38:485

    CAS  Google Scholar 

  42. Kruszyna HG, Bodek I, Libby LK, Milburn RM (1974) Inorg Chem 13:434

    Article  CAS  Google Scholar 

  43. Kabir-ud-Din, Fatma W, Khan Z (2004) Colloids Surf A 234:159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. De Battisti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferro, S., Martínez-Huitle, C.A. & De Battisti, A. Electroxidation of oxalic acid at different electrode materials. J Appl Electrochem 40, 1779–1787 (2010). https://doi.org/10.1007/s10800-010-0113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0113-y

Keywords

Navigation