Skip to main content
Log in

Effect of heat treatment on PtRu/C catalyst for methanol electro-oxidation

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of heat treatment on a commercial PtRu/C catalyst was investigated with a focus on the relationship between electrochemical and surface properties. The heat treated PtRu/C catalysts were prepared by reducing the commercial PtRu/C catalyst at 300, 500, and 600 °C under hydrogen flow. The maximum mass activity for the methanol electro-oxidation reaction (MOR) was observed in the catalyst heat treated at 500 °C, while specific activity for the MOR increased with increasing heat treatment temperature. Cyclic voltammetry (CV) results revealed that the heat treatment caused Pt rich surface formation. The increase in surface Pt was confirmed by X-ray photoelectron spectroscopy; the surface (Pt:Ru) ratio of the fresh catalyst (81:19) changed to (87:13) in the 600 °C heat treated catalyst. Quantitative analysis of the Ru oxidation state showed that the ratio of metallic Ru increased with an increase in heat treatment temperature. On the other hand, RuOxHy completely reduced at 500 °C and the ratio of RuO2 slightly decreased with increasing heat treatment temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arico AS, Srinivasan S, Antonucci V (2001) Fuel Cells 1:133

    Article  CAS  Google Scholar 

  2. Thomas SC, Ren X, Gottesfeld S, Zelenay P (2002) Electrochim Acta 47:3741

    Article  CAS  Google Scholar 

  3. Petrii OA (2008) J Solid State Electrochem 12:609

    Article  CAS  Google Scholar 

  4. Watanabe M, Motoo S (1975) J Electroanal Chem 60:267

    Article  CAS  Google Scholar 

  5. Markovic NM, Gasteiger HA, Ross PN Jr (1995) Electrochim Acta 40:91

    Article  CAS  Google Scholar 

  6. Chrzanowski W, Wieckowski A (1998) Langmuir 14:1967

    Article  CAS  Google Scholar 

  7. Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1993) J Phys Chem 93:12020

    Article  Google Scholar 

  8. Yajima T, Uchida H, Watanabe M (2004) J Phys Chem B 108:2654

    Article  CAS  Google Scholar 

  9. Rodriguez JA, Goodman DW (1992) Science 257:897

    Article  CAS  Google Scholar 

  10. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Phys Rev Lett 93:156801

    Article  CAS  Google Scholar 

  11. Rigsby MA, Zhou WP, Lewera A, Duong HT, Bagus PS, Jaegermann W, Hunger R, Wieckowski A (2008) J Phys Chem C 112:15595

    Article  CAS  Google Scholar 

  12. Xiong L, Manthiram A (2005) Solid State Ion 176:385

    Article  CAS  Google Scholar 

  13. Rolison DR, Hagans PL, Swider KE, Long JW (1999) Langmuir 15:774

    Article  CAS  Google Scholar 

  14. Kennedy BJ, Smith AW (1990) J Electroanal Chem 293:103

    Article  CAS  Google Scholar 

  15. Long JW, Stroud RM, Swider-Lyons KE, Rolison DR (2000) J Phys Chem B 104:9772

    Article  CAS  Google Scholar 

  16. Jeon MK, Won JY, Woo SI (2007) Electrochem Solid-State Lett 10:B23

    Article  CAS  Google Scholar 

  17. Gavrilov AN, Savinova ER, Simonov PA, Zaikovskii VI, Cherepanova SV, Tsirlina GA, Parmon VN (2007) Phys Chem Chem Phys 9:5476

    Article  CAS  Google Scholar 

  18. Lasch K, Jörissen L, Friedrich KA, Garche J (2003) J Solid State Electrochem 7:619

    Article  CAS  Google Scholar 

  19. Rose A, Crabb EM, Qian Y, Ravikumar MK, Wells PP, Wiltshire RJK, Yao J, Bilsborrow R, Mosselmans F, Russell AE (2007) Electrochim Acta 52:5556

    Article  CAS  Google Scholar 

  20. Lu Q, Yang B, Zhuang L, Lu J (2005) J Phys Chem B 109:1715

    Article  CAS  Google Scholar 

  21. Schmidt TJ, Gasteiger HA, Stäb GD, Urban PM, Kolb DM, Behm RJ (1998) J Electrochem Soc 145:2354

    Article  CAS  Google Scholar 

  22. He CZ, Kunz HR, Fenton JM (1997) J Electrochem Soc 144:970

    Article  Google Scholar 

  23. Li X, Hsing IM (2006) Electrochim Acta 52:1358

    Article  CAS  Google Scholar 

  24. Takasu BY, Itaya H, Iwazaki T, Miyoshi R, Ohnuma T, Sugimoto W, Murakami Y (2001) Chem Commun 4:341

    Article  Google Scholar 

  25. Schmidt TJ, Noeske M, Gasteiger HA, Behm RJ, Britz P, Bönnemann H (1998) J Electrochem Soc 145:925

    Article  CAS  Google Scholar 

  26. McNicol BD, Short RT (1977) J Electroanal Chem 81:249

    Article  CAS  Google Scholar 

  27. Hwang BJ, Sarma LS, Wang GR, Chen CH, Liu DG, Sheu HS, Lee JF (2007) Chem Eur J 13:6255

    Article  CAS  Google Scholar 

  28. Jeon MK, Daimon H, Lee KR, Nakahara A, Woo SI (2007) Electrochem Commun 9:2692

    Article  CAS  Google Scholar 

  29. Dickinson AJ, Carrette LPL, Collins JA, Friedrich KA, Stimming U (2004) J Appl Electrochem 34:975

    Article  CAS  Google Scholar 

  30. Gasteiger HA, Markovic N, Ross PN Jr, Cairns EJ (1994) J Electrochem Soc 141:1795

    Article  CAS  Google Scholar 

  31. Cooper JS, McGinn PJ (2006) J Power Sources 163:330

    Google Scholar 

  32. Whitacre JF, Valdez T, Narayanan SR (2005) J Electrochem Soc 152:A1780

    Article  CAS  Google Scholar 

  33. Maillard F, Schreier S, Hanzlik M, Savinova ER, Weinkauf S, Stimming U (2005) Phys Chem Chem Phys 7:385

    Article  CAS  Google Scholar 

  34. Camara GA, Giz MJ, Paganin VA, Ticianelli EA (2002) J Electroanal Chem 537:21

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the Center for Ultramicrochemical Process Systems (CUPS) sponsored by KOSEF (2008). The authors also thank Research Park/LG Chem, Ltd. and Ministry of Commerce, Industry and Energy for funding this research in the framework of the Korean government/industry joint project for the development of 50 W direct methanol fuel cell systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Ihl Woo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, M.K., Lee, K.R., Jeon, H.J. et al. Effect of heat treatment on PtRu/C catalyst for methanol electro-oxidation. J Appl Electrochem 39, 1503–1508 (2009). https://doi.org/10.1007/s10800-009-9833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9833-2

Keywords

Navigation