Skip to main content

Advertisement

Log in

Electrochemical behavior of an inorganic–organic hybrid based on isopolymolybdate anions and ethylenediamine

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The one-dimensional inorganic–organic compound, (C2H10N2)[Mo3O10], was synthesized hydrothermally, and characterized by single crystal X-ray diffraction. The compound was used as a bulk-modifier to fabricate a renewable three-dimensional chemically modified carbon paste electrode (Mo-CPE) by direct mixing. The electrochemical properties of (C2H10N2)[Mo3O10]-modified Mo-CPE were investigated with respect to their pH-dependence, stability and electrocatalytic activity. The hybrid material bulk modified Mo-CPE not only displays good electrocatalytic activity toward the reduction of BrO3 , IO3 , NO2 and H2O2, but also exhibits good stability and multiple repeatability by simply polishing on the surface of a wet filter paper, a feature which is important for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shigeta S, Mori S, Kodama E, Kodama J, Takahashi K, Yamase T (2003) Antiviral Res 58:265

    Article  CAS  Google Scholar 

  2. Judd DA, Nettles JH, Nevins N, Suyder JP, Liotta DC, Tang J, Ermolieff J, Schinazi RF, Hill CL (2001) J Am Chem Soc 123:886

    Article  CAS  Google Scholar 

  3. Li HI, Perkas N, Li QI, Gofer Y, Koltypin Y, Gedanken A (2003) Langmuir 19:10409

    Article  CAS  Google Scholar 

  4. Ozer RR, Ferry JL (2002) J Phys Chem B 106:4336

    Article  CAS  Google Scholar 

  5. Sadakane M, Steckhan E (1998) Chem Rev 98:219

    Article  CAS  Google Scholar 

  6. Moffat JB (2001) Metal-oxygen clusters. The surface and catalytic properties of heteropoly-oxometalates. Fundamental and applied catalysis. Kluwer Academic/Plenum Press, New York

    Google Scholar 

  7. Kozhevnikov IV (1998) Chem Rev 98:171

    Article  CAS  Google Scholar 

  8. Pope MT, Müller A (1994) Polyoxometalates: from platonic solids to anti-retroviral activity. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  9. Hill CL (1998) Chem Rev 98:1

    Article  CAS  Google Scholar 

  10. Pope MT, Yamase T (2002) Polyoxometalate chemistry for nano-composite design. Kluwer Academic Press, New York

    Google Scholar 

  11. Clemente-Juan JM, Coronado E (1999) Coord Chem Rev 193:361

    Article  Google Scholar 

  12. Coronado E, Mingotaud C (1999) Adv Mater 11:869

    Article  CAS  Google Scholar 

  13. Clemente-León M, Coronado E, Delhaes P, Gomez-Garc CJ, Mingotaud C (2001) Adv Mater 13:574

    Article  Google Scholar 

  14. Clemente-León M, Soyer H, Coronado E, Mingotaud C, Gomez-Garc CJ, Delhaés P (1998) Angew Chem Int Ed 37:2842

    Article  Google Scholar 

  15. Wang XH, Liu JF, Pope MT (2003) Dalton Trans 957

  16. Kortz U, Savelieff MG, Ghali FYA, Khalil LM, Maalouf SA, Sinno DI (2002) Angew Chem Int Ed 41:4070

    Article  CAS  Google Scholar 

  17. Wei Y, Lu M, Cheung CF, Barnes CL, Peng Z (2001) Inorg Chem 40:5489

    Article  CAS  Google Scholar 

  18. Shell JW (1958) Anal Chem 30:1576

    Article  CAS  Google Scholar 

  19. Economou A (2005) Trends Analyt Chem 24:334

    Article  CAS  Google Scholar 

  20. Kalcher K, Kauffmann JM, Wang J, Svancara I, Vytras K, Neuhold C, Yang ZP (1995) Electroanalysis 7:5

    Article  CAS  Google Scholar 

  21. Svancara I, Vytras K, Zima J, Barek JJ (2001) Crit Rev Anal Chem 31:311

    Article  CAS  Google Scholar 

  22. Pauliukaite R, Metelka R, Svancara I, Krolicka A, Bobrowski A, Vytras K, Norkus E, Kalcher K (2002) Anal Bioanal Chem 374:1155

    Article  CAS  Google Scholar 

  23. Vytras K, Svancara I, Metelka R (2002) Electroanalysis 14:1359

    Article  CAS  Google Scholar 

  24. Wang XL, Wang EB, Hu CW (2001) Chem Lett 30:1030

    Article  Google Scholar 

  25. Wang XL, Kang ZH, Wang EB, Hu CW (2002) J Electroanal Chem 523:142

    Article  CAS  Google Scholar 

  26. Dong SJ, Wang YD (1989) Electroanalysis 1:99

    Article  CAS  Google Scholar 

  27. Shen Y, Liu JY, Jiang JG, Liu BF, Dong SJ (2002) Electroanalysis 14:1557

    Article  CAS  Google Scholar 

  28. Zhai SY, Liu JY, Jiang JG, Dong SJ (2003) Electroanalysis 15:1165

    Article  CAS  Google Scholar 

  29. Niu JJ, Dong SJ (1995) Electroanalysis 7:1059

    Article  CAS  Google Scholar 

  30. Zhang LR, Shi Z, Yang GY, Chen XM, Feng SH (1999) J Solid State Chem 148:454

    Article  Google Scholar 

  31. Kalcher K (1990) Electroanalysis 2:419

    Article  CAS  Google Scholar 

  32. Wang XL, Kang ZH, Wang EB, Hu CW (2002) Mater Lett 56:393

    CAS  Google Scholar 

  33. Wang XL, Zhang H, Wang EB, Hu CW (2004) Mater Lett 58:1661

    Article  CAS  Google Scholar 

  34. Wang XL, Zhang Q, Han ZB, Wang EB, Guo YQ, Hu CW (2004) J Electroanal Chem 563:221

    Article  CAS  Google Scholar 

  35. Yamase T (1998) Chem Rev 98:307

    Article  CAS  Google Scholar 

  36. Coronado E, Galan-mascaros JR, Gimenez-Saiz C, Gomez-Garcia CJ (1993) Adv Mater 4:283

    Google Scholar 

  37. Han ZG, Zhao YL, Peng J, Feng YH, Yin JN, Liu Q (2005) Electroanalysis 17:12

    Article  Google Scholar 

  38. Wang XL, Han ZB, Wang EB, Zhang H, Hu CW (2003) Electroanalysis 15:18

    CAS  Google Scholar 

  39. Wang XL, Wang EB, Lan Y, Hu CW (2002) Electroanalysis 14:15

    Google Scholar 

  40. Guillou N, Ferey G (1997) J Solid State Chem 132:224

    Article  CAS  Google Scholar 

  41. Keita B, Belhouari A, Nadjo L, Contant R (1995) J Electroanal Chem 381:243

    Article  Google Scholar 

  42. Batarmurgan A, Chen SM (2007) Electroanalysis 19:1616

    Article  Google Scholar 

  43. Qu JY, Zou XQ, Liu BF, Dong SJ (2007) Anal Chim Acta 599:51

    Article  CAS  Google Scholar 

  44. Ma HY, Dong T, Wang G, Zhang W, Wang FP, Wang XD (2006) Electroanalysis 18:2475

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (No. 20771031) and the China Postdoctoral Science Foundation (No. 200503644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyuan Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Zhang, Y., O’Halloran, K.P. et al. Electrochemical behavior of an inorganic–organic hybrid based on isopolymolybdate anions and ethylenediamine. J Appl Electrochem 39, 1011–1015 (2009). https://doi.org/10.1007/s10800-008-9748-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9748-3

Keywords

Navigation