Skip to main content
Log in

Powdered activated carbon and carbon paste electrodes: comparison of electrochemical behaviour

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Commercial activated carbon (Norit R3ex), de-mineralised with conc. HF and HCl, was oxidised (conc. HNO3) and heat-treated at various temperatures (180, 300 and 420 °C). The physicochemical properties of the samples obtained were characterised by selective neutralisation and pH-metric titration of surface functional groups (acid–base properties), thermogravimetry (thermal stability—TG), FTIR spectroscopy (chemical structure) and low-temperature nitrogen adsorption (BET surface area). Thermal treatment of the carbon materials caused the surface functional groups to decompose; in consequence, the chemical properties of the carbon surfaces changed. Cyclic voltammetric studies were carried out on all samples using a powdered activated carbon electrode (PACE) and a carbon paste electrode (CPE), as were electrochemical measurements in aqueous electrolyte solutions (0.1 M HNO3 or NaNO3) in the presence of Cu2+ ions acting as a depolariser. The shapes of the cyclic voltammograms varied according to the form of the electrodes (powder or paste) and to the changes in the surface chemical structure of the carbons. The electrochemical behaviour of the carbons depended on the presence of oxygen-containing surface functional groups. The peak potentials and their charge for the redox reactions of copper ions \( \left( {{\text{Cu}}^{2 + } \leftrightarrow {\text{Cu}}^{ + } \leftrightarrow {\text{Cu}}^{0} } \right) \) depended on their interaction with the carbon surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bansal RC, Goyal M (2005) Activated carbon adsorption. CRC/Taylor and Francis Group, Boca Raton

    Google Scholar 

  2. Radovic LR, Moreno-Castilla C, Rivera-Utrilla J (2001) In: Radovic LR (ed) Chemistry & physics of carbon, vol 27. Marcel Dekker, Inc, New York, p 227

    Google Scholar 

  3. Biniak S, Świątkowski A, Pakuła M (2001) In: Radovic LR (ed) Chemistry & physics of carbon, vol 27. Marcel Dekker, Inc, New York, p 125

    Google Scholar 

  4. Kinoshita K (1988) Carbon: electrochemical and physicochemical properties. Wiley, New York

    Google Scholar 

  5. Hsieh CT, Teng H (2002) Carbon 40:667

    Article  CAS  Google Scholar 

  6. Pakula M, Biniak S, Swiatkowski A, Neffe S (2002) Carbon 40:1873

    Article  CAS  Google Scholar 

  7. Beilby AL, Carlsson A (1988) J Electroanal Chem 448:283

    Article  Google Scholar 

  8. Surya A, Murthy NA (1993) Electroanalysis 5:265

    Article  CAS  Google Scholar 

  9. Yang Y, Lin ZG (1994) J Electroanal Chem 364:2

    Article  Google Scholar 

  10. Shin H, Park M, Kim AR, Kang C (2003) J Electroanal Chem 547:143

    Article  CAS  Google Scholar 

  11. Drissi-Daoudi R, Irhzo A, Darchen A (2003) J Appl Electrochem 33:339

    Article  CAS  Google Scholar 

  12. Cofre P, Bustos A (1994) J Appl Electrochem 24:564

    Article  CAS  Google Scholar 

  13. Jannakoudakis AD, Jannakoudakis PB, Theodoridou E, Besenhard JO (1990) J Appl Electrochem 20:619

    Article  CAS  Google Scholar 

  14. Kalcher K, Kauffmann JM, Wang J, Svancara I, Vytras K, Neuhold C, Yang Z (1995) Electroanalysis 7:5

    Article  CAS  Google Scholar 

  15. Darlewski W, Swiatkowski A (1997) Przemysł Chemiczny 76:440 (in Polish)

    CAS  Google Scholar 

  16. Lopes da Silva WT, Thobie-Gautier C, Rezende MOO, El Murr N (2002) Electroanalysis 14:71

    Article  CAS  Google Scholar 

  17. Pakula M, Swiatkowski A, Biniak S (1995) J Appl Electrochem 25:1038

    Article  CAS  Google Scholar 

  18. Shiu KK, Shi K (1998) Electroanalysis 10:959

    Article  CAS  Google Scholar 

  19. Dandekar A, Baker RTK, Vannice MA (1999) J Catal 183:131

    Article  CAS  Google Scholar 

  20. Pletcher D, Sheridan AJ (1998) Electrochim Acta 43:3105

    Article  CAS  Google Scholar 

  21. Jannakoudakis AD, Jannakoudakis PB, Pagalos N, Theodoridou E (1994) Electrochim Acta 39:1881

    Article  CAS  Google Scholar 

  22. Garjonyte R, Malinauskas A (1998) Sens Actuators B Chem 46:236

    Article  Google Scholar 

  23. Jankowska H, Świątkowski A, Choma J (1991) Active carbon. Ellis Horwood, New York

    Google Scholar 

  24. McCreery RL, Cline KK (1996) In: Kissinger PT, Heineman WR (eds) Laboratory technique in electroanalytical chemistry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  25. Guaus E, Torrent-Burgues J (2007) Portugaliae Electrochim Acta 25:139

    Article  CAS  Google Scholar 

  26. Driad JP, Montella C (2006) J Electroanal Chem 590:126

    Article  CAS  Google Scholar 

  27. Bond AM (1980) Modern polarographic methods in analytical chemistry. Marcel Dekker, New York

    Google Scholar 

  28. Biniak S, Pakuła M, Szamański GS, Świątkowski A (1999) Langmuir 15:6117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Polish Ministry of Science and Higher Education (project No. 3 T09B 067 29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Biniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biniak, S., Pakuła, M., Darlewski, W. et al. Powdered activated carbon and carbon paste electrodes: comparison of electrochemical behaviour. J Appl Electrochem 39, 593–600 (2009). https://doi.org/10.1007/s10800-008-9697-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9697-x

Keywords

Navigation