Skip to main content

Advertisement

Log in

New electrocatalytic materials based on mixed metal oxides: electrochemical quartz crystal microbalance characterization

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

An electrochemical Quartz Crystal Microbalance (EQCM) was used to characterize a mixed metal oxide electrocatalyst, Ir0.15Sn0.85O2, for the Oxygen Evolution Reaction (OER) in acidic medium in the potential range of the pseudo-capacitance reaction, from 0.4 to 1.2 V versus Reversible Hydrogen Electrode (RHE). The EQCM gold tip was characterized in H2SO4 0.05 M and HClO4 0.1 M. Subsequently, Ir0.15Sn0.85O2 powder, synthesized by a sol–gel route, was supported on the tip gold surface for investigations in the same media. The simultaneous measurements of mass variation and current density as functions of potential led to the identification of the chemical species involved in the mass transfer between the oxide and the acidic solution during the pseudo-capacitance reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wuebbles DJ, Atul KJ (2001) Fuel Process Technol 71:99

    Article  CAS  Google Scholar 

  2. Chalk SG, Miller JF (2006) J Power Sources 159:73

    Article  CAS  Google Scholar 

  3. Ecsedy CJ, Murphy CG (1992) Water Environ Res 64:647

    CAS  Google Scholar 

  4. Alejaldre C, De Marco F, Finzi U et al (2005) Nucl Fusion 45:A1

    Article  CAS  Google Scholar 

  5. Schultz MG, Diehl T, Brasseur GP, Zittel W (2003) Science 302:624

    Article  CAS  Google Scholar 

  6. Dunn S (2002) Int J Hydrogen Energy 27:235

    Article  CAS  Google Scholar 

  7. Turner JA (2004) Science 305:972

    Article  CAS  Google Scholar 

  8. Stavy M (2005) J Sol Energy Eng 127:161

    Article  CAS  Google Scholar 

  9. Hetland J, Mulder G (2007) Int J Hydrogen Energy 32:736

    Article  CAS  Google Scholar 

  10. Granovskii M, Dincer I, Rosen MA (2007) Int J Hydrogen Energy 32:927

    Article  CAS  Google Scholar 

  11. Schug CA (1998) Int J Hydrogen Energy 23:1113

    Article  CAS  Google Scholar 

  12. Bilgen E (2004) Sol Energy 77:47

    Article  CAS  Google Scholar 

  13. Ogden JM, Williams RH (1990) Int J Hydrogen Energy 15:155

    Article  CAS  Google Scholar 

  14. Trasatti S (2001) Port Electrochim Acta 19:197

    Article  CAS  Google Scholar 

  15. Rasten E, Hagen G, Tunold R (2003) Electrochim Acta 48:3945

    Article  CAS  Google Scholar 

  16. Slavcheva E, Radev I, Bliznakov S et al (2007) Electrochim Acta 52:3889

    Article  CAS  Google Scholar 

  17. De Pauli CP, Trasatti S (2002) J Electroanal Chem 538–539:145

    Article  Google Scholar 

  18. Krstajic N, Trasatti S (1998) J Appl Electrochem 28:1291

    Article  CAS  Google Scholar 

  19. Cardarelli F, Taxil P, Savall A et al (1998) J Appl Electrochem 28:245

    Article  CAS  Google Scholar 

  20. Horvath E, Kristof J, Frost RL et al (2004) J Thermal Anal Calorim 78:687

    Article  CAS  Google Scholar 

  21. Chen X, Chen G, Yue PL (2001) J Phys Chem B 105:4623

    Article  CAS  Google Scholar 

  22. Comninellis Ch, Vercesi GP (1991) J Appl Electrochem 21:335

    Article  Google Scholar 

  23. De Pauli CP, Trasatti S (1995) J Electroanal Chem 396:161

    Article  Google Scholar 

  24. Lassali TAF, Boots JFC, Bulhoes LOS (1999) Electrochim Acta 44:4203

    Article  CAS  Google Scholar 

  25. da Silva LA, Alves VA, de Castro SC, Boots JFC (2000) Colloid Surface A 170:119

    Article  CAS  Google Scholar 

  26. Chen X, Chen G, Yue PL (2002) J Phys Chem B 106:4364

    Article  CAS  Google Scholar 

  27. Ortiz PI, De Pauli CP, Trasatti S (2004) J New Mat Electrochem Syst 7:153

    CAS  Google Scholar 

  28. Chen X, Chen G (2005) J Electrochem Soc 152:J59

    Article  CAS  Google Scholar 

  29. Marshall A, Børresen B, Hagen G et al (2007) Energy 32:431

    Article  CAS  Google Scholar 

  30. Ardizzone S, Cappelletti G, Ionita M et al (2005) Electrochim Acta 50:4419

    Article  CAS  Google Scholar 

  31. Ionita M, Cappelletti G, Minguzzi A et al (2006) J Nanopart Res 8:653

    Article  CAS  Google Scholar 

  32. Minguzzi A (2004) Thesis, The University of Milan, Italy

  33. Borgese L (2005) Thesis, The University of Milan, Italy

  34. Ardizzone S, Bianchi CL, Cappelletti G et al (2006) J Electroanal Chem 589:160

    Article  CAS  Google Scholar 

  35. Hu C-C, Chang K-H (2000) Electrochim Acta 45:2685

    Article  CAS  Google Scholar 

  36. Sauerbrey G (1959) Z Phys 155:206

    Article  CAS  Google Scholar 

  37. Vatankhah G, Lessard J, Jerkiewicz G et al (2003) Electrochim Acta 48:1613

    Article  CAS  Google Scholar 

  38. Zolfaghari A, Conway BE, Jerkiewicz G (2002) Electrochim Acta 47:1173

    Article  CAS  Google Scholar 

  39. Marshall A, Børresen B, Hagen G et al (2006) Electrochim Acta 51:3161

    Article  CAS  Google Scholar 

  40. Tian M, Pell WG, Conway BE (2003) Electrochim Acta 48:2675

    Article  CAS  Google Scholar 

  41. Watanabe M, Uchida H, Ikeda N (1995) J Electroanal Chem 380:255

    Article  Google Scholar 

  42. Rodriguez Nieto FJ, Andreasen G, Martins ME et al (2003) J Phys Chem B 107:11452

    Article  CAS  Google Scholar 

  43. Ardizzone S, Carugati A, Trasatti S (1981) J Electroanal Chem 126:287

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support by the Oronzio e Niccolò De Nora Foundation, MUR-The University of Milan (FIRST funds) and Fondazione Monte dei Paschi di Siena are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vertova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vertova, A., Borgese, L., Cappelletti, G. et al. New electrocatalytic materials based on mixed metal oxides: electrochemical quartz crystal microbalance characterization. J Appl Electrochem 38, 973–978 (2008). https://doi.org/10.1007/s10800-008-9510-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9510-x

Keywords

Navigation