Skip to main content
Log in

Electrocombustion of humic acid and removal of algae from aqueous solutions

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reports experiments involving the electrochemical combustion of humic acid (HA) and removal of algae from pond water. An electrochemical flow reactor with a boron-doped diamond film anode was used and constant current experiments were conducted in batch recirculation mode. The mass transfer characteristics of the electrochemical device were determined by voltammetric experiments in the potential region of water stability, followed by a controlled current experiment in the potential region of oxygen evolution. The average mass transfer coefficient was 5.2 × 10−5 m s−1. The pond water was then processed to remove HA and algae in the conditions in which the reaction combustion occurred under mass transfer control. To this end, the mass transfer coefficient was used to estimate the initial limiting current density applied in the electrolytic experiments. As expected, all the parameters analyzed here—solution absorbance at 270 nm, total phenol concentration and total organic carbon concentration—decayed according to first-order kinetics. Since the diamond film anode successfully incinerated organic matter, the electrochemical system proved to be predictable and programmable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Davies G, Ghabbour EA, Jansen SA, Varnum J (1995) In: Prasad PN, Mark JE, Fai TJ (eds) Advanced new materials and emerging new technologies. Plenum, New York, p 677

  2. Reuter JH, Perdue EM (1977) Geochim Cosmochim Acta 41:325

    Article  CAS  Google Scholar 

  3. Bouwer EJ, Crowe PB (1988) J Am Water Works Assoc 80:82

    CAS  Google Scholar 

  4. Broo AE, Berghult B, Hedberg T (1999) Water Sci Technol 40:17

    CAS  Google Scholar 

  5. Ahmed MM, Muller W, Ismail AMA (1995) Zentralblatt fur Hygiene und Umweltmedizin 197:534

    CAS  Google Scholar 

  6. Benoufella F, Laplanche A, Boisdon V, Bourbigot MM (1994) Water Sci Technol 30:245

    CAS  Google Scholar 

  7. Steynberg MC, Guglielmi MM, Geldenhuys JC, Pieterse JH (1996) J Water Services Res Technol-Aqua 45:162

    CAS  Google Scholar 

  8. Montiel A, Welteé B (1998) Water Sci Technol 37:65

    Article  CAS  Google Scholar 

  9. Petrusevski B, Breemen ANV, Alaerts G (1996) J Water Services Res Technol-Aqua 45:316

    CAS  Google Scholar 

  10. Galambos D, Vatai G, Bekassy-Molnar E (2004) Desalination 162:111

    Article  CAS  Google Scholar 

  11. Valade MT, Edzwald JK, Tobiason JE, Dahlquist J, Hedberg T, Amato T (1996) J Am Water Works Assoc 88:35

    CAS  Google Scholar 

  12. Singer PC (1990) J Am Water Works Assoc 82:78

    CAS  Google Scholar 

  13. Bekbolet M, Ozkosemen G (1996) Water Sci Technol 33:189

    Article  CAS  Google Scholar 

  14. Bekbolet M, Cecen F, Ozkosemen G (1996) Water Sci Technol 34:65

    Article  CAS  Google Scholar 

  15. Bekbolet M, Balcioglu I (1996) Water Sci Technol 34:73

    Article  CAS  Google Scholar 

  16. Eggins BR, Palmer FL, Byrne JA (1997) Water Res 31:1223

    Article  CAS  Google Scholar 

  17. Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber JV (2002) J Photochem Photobiol A 152:267

    Article  CAS  Google Scholar 

  18. Al-Rasheed R, Cardin DJ (2003) Appl Catal A 246:39

    Article  CAS  Google Scholar 

  19. Kamiya M, Kameyama K (1998) Chemosphere 36:2337

    Article  CAS  Google Scholar 

  20. Hustert K, Moza PN, Kettrup A (1999) Chemosphere 38:3423

    Article  CAS  Google Scholar 

  21. Fukushima M, Tatsumi K, Nagao S (2001) Environ Sci Technol 35:3683

    Article  CAS  Google Scholar 

  22. Katsumata H, Kaneco S, Suzuki T, Otha K, Yobiko Y (2005) Chem Eng J 108(3):269

    Article  CAS  Google Scholar 

  23. Chiang LC, Chang JE, Tseng SC (1997) Water Sci Technol 36:123

    Article  CAS  Google Scholar 

  24. Motheo AJ, Pinhedo L (2000) Sci Total Environ 256:67

    Article  CAS  Google Scholar 

  25. Chiang LC, Chang JE, Wen TCN (2000) Water Sci Technol 42:225

    CAS  Google Scholar 

  26. Pinhedo L, Bertazzoli R, Motheo AJ (2005) Appl Catal B: Environ 57:75

    Article  CAS  Google Scholar 

  27. Li XZ, Li FB, Fan CM, Sun YP (2002) Water Res 36:2215

    Article  CAS  Google Scholar 

  28. Selcuk H, Sene JJ, Anderson MA (2003) J Chem Technol Biotechnol 78:979

    Article  CAS  Google Scholar 

  29. Selcuk H, Sene JJ, Sarikaya HZ, Bekbolet M, Anderson MA (2004) Water Sci Technol 49:153

    CAS  Google Scholar 

  30. Comninellis C (1993) In: CAC Sequeira (ed) Environmental oriented electrochemistry. Elsevier, Amsterdam, p 77

  31. Simond O, Schaller V, Comninellis C (1997) Electrochim Acta 42:2009

    Article  CAS  Google Scholar 

  32. Iniesta J, Michaud P-A, Panizza M, Cerisola G, Aldaz A, Comninellis C (2001) Electrochim Acta 46:3573

    Article  CAS  Google Scholar 

  33. Gherardini L, Michaud P-A, Panizza M, Comninellis C, Batistas N (2001) J Electrochem Soc 148:D78

    Article  CAS  Google Scholar 

  34. Witzel RG, Likens GE (1991) Limnological analysis. Springer-Verlag, NY, 152–161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodnei Bertazzoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, A.A., Spitzer, M., Motheo, A.J. et al. Electrocombustion of humic acid and removal of algae from aqueous solutions. J Appl Electrochem 38, 721–727 (2008). https://doi.org/10.1007/s10800-008-9502-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9502-x

Keywords

Navigation