Skip to main content
Log in

Effect of ascorbic acid on mild steel dissolution in sulphuric acid solution investigated by electrochemical polarization and surface probe techniques

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of ascorbic acid (AA) on the corrosion of mild steel in sulphuric acid solution has been investigated by open circuit potential (OCP) and polarization measurements. AA was observed to shift the OCP to more positive potentials with increasing concentration. The polarization curves revealed that AA inhibited the anodic metal dissolution reaction, although this effect became negligible at high anodic overpotentials. The trend of inhibition efficiency with concentration showed that efficiency increased rapidly at low concentrations, remained almost steady at intermediate concentrations and increased again at high concentrations. The mechanism of inhibition was considered in terms of initial chemisorption of AA according to the Temkin isotherm, followed by formation of chelate compounds with Fe2+ ions at high concentrations. EDS and AFM analyses of the electrode surface support the proposed inhibition mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shibli SMA, Saji VS (2005) Corros Sci 47:2213

    Article  CAS  Google Scholar 

  2. Mu G, Li X (2005) J Coll Interface Sci 289:184

    Article  CAS  Google Scholar 

  3. Oguzie EE, Onuoha GN, Onuchukwu AI (2004) Mater Chem Phys 89:305

    Article  Google Scholar 

  4. Oguzie EE, Unaegbu C, Ogukwe CN, Okolue BN, Onuchukwu AI (2004) Mater Chem Phys 84:363

    Article  CAS  Google Scholar 

  5. Oguzie EE, Onuoha GN, Onuchukwu AI (2004) Mater Chem Phys 89:305

    Article  Google Scholar 

  6. Harek Y, Larabi L (2004) Kem Ind 53(2):55

    CAS  Google Scholar 

  7. Kissi M, Bouklah M, Hammouti B, Benkaddour M (2006) Appl Surf Sci 252:4190

    Article  CAS  Google Scholar 

  8. Ameer MA, Khamis E, Al-Senani G (2000) Ads Sci Tech 18(3):177

    Article  CAS  Google Scholar 

  9. Christov M, Popova A (2004) Corros Sci 46:1613

    Article  CAS  Google Scholar 

  10. Ateya BG, El-Anadouli BE, El-Nizamy FMA (1981) Bull Chem Soc Jpn 54:3517

    Article  Google Scholar 

  11. Jianguo Y, Lin W, Otieno-Alego V, Schweinsberg DP (1995) Corros Sci 37(6):975

    Article  CAS  Google Scholar 

  12. Oguzie EE (2006) Mater Chem Phys 99:441

    Article  CAS  Google Scholar 

  13. Oguzie EE (2005) Pigmt Res Tech 34:321

    Article  CAS  Google Scholar 

  14. Oguzie EE, Iyeh KL, Onuchukwu AI (2006) Bull Electrochem 22(2):63

    CAS  Google Scholar 

  15. Gunasekaran G, Chauhan LR (2004) Electrochim Acta 49:4387

    Article  CAS  Google Scholar 

  16. Morad MS, El-Hagag A, Hermas A, Abdel Aal MS (2002) J Chem Technol Biotechnol 77:486

    Article  CAS  Google Scholar 

  17. Moretti G, Guidi F, Grion G (2004) Corros Sci 46:387

    Article  CAS  Google Scholar 

  18. Ochoa N, Moran F, Pebere W, Tribollet B (2005) Corros Sci 47:593

    Article  CAS  Google Scholar 

  19. Matos JB, Pereira LP, Agostinho SML, Barcia E, Cordeiro GGO, D’Elia E (2004) J Electroanal Chem 570:91

    Article  CAS  Google Scholar 

  20. Zumreoglu-Karan B (2006) Coord Chem Rev 250:2295

    Article  Google Scholar 

  21. Lyman CM, Schultze MO, King CG (1937) J Biol Chem 113:757

    Google Scholar 

  22. Roig MG, Rivera ZS, Kennedy JF (1995) Int J Food Sci Nutr 46:107

    CAS  Google Scholar 

  23. Sekine I, Nakahata Y, Tanabe H (1988) Corros Sci 28:987

    Article  CAS  Google Scholar 

  24. Nigam AN, Tripathi RP, Jangid ML, Dhoot K, Chacharkar MP (1990) Corros Sci 30:201

    Article  CAS  Google Scholar 

  25. Goncalves RS, Mello LD (2001) Corros Sci 43:457

    Article  CAS  Google Scholar 

  26. Ferreira ES, Giacomelli C, Giacomelli FC, Spinelli A (2004) Mater Chem Phys 83:129

    Article  CAS  Google Scholar 

  27. Cao C (1996) Corros Sci 38:2073

    Article  CAS  Google Scholar 

  28. Bockris JO, Swinkels DAJ (1964) J Electrochem Soc 11:736

    Article  Google Scholar 

  29. Popova A, Sokolova E, Raicheva S, Christov M (2003) Corros Sci 45:33

    Article  Google Scholar 

  30. Chikh ZA, Chebabe D, Dermaj A, Hajjaji N, Srhiri A, Montemor MF, Ferreira MGS, Bastos AC (2005) Corros Sci 47:447

    Article  Google Scholar 

Download references

Acknowledgements

E. E. Oguzie is grateful to the Chinese Academy of Sciences (CAS) and the Academy of Sciences for the Developing World (TWAS) for the award of CAS-TWAS Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oguzie, E.E., Li, Y. & Wang, F.H. Effect of ascorbic acid on mild steel dissolution in sulphuric acid solution investigated by electrochemical polarization and surface probe techniques. J Appl Electrochem 37, 1183–1190 (2007). https://doi.org/10.1007/s10800-007-9384-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9384-3

Keywords

Navigation