Skip to main content
Log in

Kinetics of the electrochemical deposition of sulfur from sulfide polluted brines

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The kinetics of the electrochemical oxidation of sulfide ions in salt water were studied using rotating graphite disc electrodes, polarization techniques, Electrochemical Impedance Spectroscopy (EIS), X-ray Photoelectron Spectroscopy (XPS) and Electron Dispersion Spectroscopy (EDS). Elemental sulfur was shown to be the final product under various temperatures, potentials and times of electrolysis, in amounts that increased with increase in the above variables. The rate of the process is controlled by electron transfer across the interface, while diffusion in the electrolyte has only a modest effect. The apparent reaction orders with respect to the sulfide concentration and pH are 0.60 and 0, respectively. The proposed overall reaction is: \({\hbox{HS}^{-}_{\rm (aq)} \to \hbox{S} + \hbox{H}^{+} + 2\hbox{e}},\) while the rate determining step is: \({\hbox{HS}^{-}_{\rm (aq)}\to \hbox{HS}_{\rm ads} + \hbox{e}}.\) The charge transfer coefficient is αa = 0.23 and the standard rate constant at the equilibrium potential is \({k^{\circ}=2.2 \times 10^{-7}}\) cm s−1. The degree of coverage of the electrode with sulfur and the polarization resistance of the interface increase, while the current decreases, with the time of electrolysis as more sulfur is deposited on the electrode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. U.S. Environmental Protection Agency, Extremely Hazardous Substance: Superfund Chemical Profiles, CAS Registry Number 7783-06-4, Vol. 1, (Noys Data Corporation, New Jersey, 1988)

  2. H.C.H. Darely, G.R. Gray, Composition and Properties of Drilling and Completion Fluids, Fifth edn. (Gulf Publishing Company, Houston 1988) p. 477.

    Google Scholar 

  3. L. Garverick (Ed), Corrosion in the Petrochemical Industry (ASM International, Metals Park, Ohio, 1994) p. 259

  4. R.L. Garrett, R.K. Clark, L.L. Carney and C.K. Granthm, Chemical Scavengers for Sulfides in Water-Based Drilling Fluids, SPE Reprint Series 44 (1997) 170

  5. A.K. Singh, B.S. Kohil and R.P. Wendt, World Oil 209 (1989) 99; ibid, 209 (1989) 77

  6. A.Y. Al-Humaidan and H.A. Nasr-El-Din, Optimization of Hydrogen Sulfide Scavengers used during Well Stimulation, in ‘Proceedings of the (1999), SPE International Symposium on Oilfield Chemistry’ (1999)

  7. P.Chr. Schorling, M. Brauchle, Application of Hydrogen Sulfide Scavenger in the Oil and Gas Field, Erdoel Ergas Kohle/EKEP 117 (2001) 78

  8. P. Scott, Oil & Gas J. 92 (1994) 72.

    CAS  Google Scholar 

  9. Z. Mao, A. Anani, R.E. White, S. Srinivasan, A.J. Appleby, Electrochem. Soc. 138 (1991) 1299.

    Article  CAS  Google Scholar 

  10. B.G. Ateya and F.M. Al-Kharafi, Electrochem. Commun., 4 (2002) 231.

    Article  CAS  Google Scholar 

  11. G. Rajalo and T. Petrovskaya, Environ. Technol., 17 (1996) 605.

    Article  CAS  Google Scholar 

  12. N.N. Rao, K.M. Somasekhar, S.N. Kaul and L. Szpyrkowicz, J. Chem. Technol. Biotechnol., 76 (2001) 1124.

    Article  CAS  Google Scholar 

  13. L. Szpyrkowicz, S. N. Kaul and R. N. Neti, J. Appl. Electrochem., 35 (2005) 381.

    Article  CAS  Google Scholar 

  14. J.O.M. Bockris and Shahid Khan, Surface Electrochemistry: A Molecular Level Approach (Plenum Press, London, 1993) p. 951, p. 585

  15. M. Behm and D. Simonsson, J. Appl. Electrochem., 27 (1997) 507.

    Article  CAS  Google Scholar 

  16. P.M. Lessner, F.R. McLarnon, J. Winnick, E.J. Cairns, J. Appl. Electrochem. 22 (1992) 927.

    Article  CAS  Google Scholar 

  17. A. Chen and B. Miller, J. Phys. Chem. 108B (2004) 2245.

    Google Scholar 

  18. A.B. Florou, M.I. Prodromidis, M.I. Karayannis, and S.M. Tzouwara-Karayanni, Talanta, 52 (2000) 465.

    Article  CAS  Google Scholar 

  19. H. Ding, V. Erokhin, M.K. Ram, P. Sergio, C. Nicolini., Mater. Sci. Eng. C: Biomim. Supermole. Syst. 11 (2000) 121.

    Google Scholar 

  20. W. Yourong, Y. Heqing and W. E’ feng, J. Electroanal. Chem. 497 (2000) 163.

    Article  Google Scholar 

  21. N.S. Lawerence, J. Davis, R.G. Compton, Talanta, 52 (2000) 771.

    Article  Google Scholar 

  22. A.J. Bard, R. Parsons and J. Jordan (Eds), Standard Potentials in Aqueous Solutions (Marcel Dekker Inc., New York, 1985), p. 94

  23. Zhdanow S. I. In: Bard A. J. (eds), Encyclopedia of the Electrochemistry of the Elements Vol 6. (Marcel Dekker, New York 1982).

    Google Scholar 

  24. Valensi G., van Muylder J., Pourbaix M. In: Pourbaix M. (eds), Atlas of Electrochemical Equilibria in Aqueous Media. (NACE, Texas, 1974) pp. 545.

    Google Scholar 

  25. E. Protopopoff and P. Marcus, Corros. Sci., 45 (2003) 1191.

    Article  CAS  Google Scholar 

  26. V.G. Levich, Physicochemical Hydrodynamics (Prenticle-Hall Inc., Englewood Cliffs, New Jersey, 1962) p. 69 and p. 78.

  27. A.R. Gerson, T. Bredow (2000). Surf. Interface Anal. 29:145.

    Article  CAS  Google Scholar 

  28. J.A. Dean (Ed), Lange’s Handbook of Chemistry, 15th ed., (McGraw- Hill, New York, 1999), p. 4.2

  29. L.M. De Silva, L.A. De Faria, J.F.C Boodts, Electrochim. Acta 48 (2003) 699.

    Article  Google Scholar 

  30. V.M. Tsioskii, L.I. Krishtalik and L.B. Kriksunov, Electrochim. Acta, 33 (1988) 623.

    Article  Google Scholar 

  31. M.L. Foresti, M. Innocenti., F. Forni., R. Guidelli., Langmuir 14 (1998) 7008.

    Article  CAS  Google Scholar 

  32. L.M. Da Silva, D.V. Franco, L.A. De Faria and J.F.C. Boodts, Electrochim. Acta,49 (2004) 3977.

    Article  CAS  Google Scholar 

  33. R.E. Meyer, J. Electrochem. Soc. 107 (1960) 847.

    CAS  Google Scholar 

  34. J.J. MacDonald and B.E. Conway, Proc. Roy. Soc. 269 (1962) 419.

    Google Scholar 

  35. A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York (2001)) 95.

    Google Scholar 

  36. C.M.A. Brett and A.M.O. Brett, Electrochemistry, Principles, Methods and Applications (Oxford University Press, Oxford, 1993) p. 73 and p. 76

  37. R. Mills, V.M.M. Lobo, Self Diffusion in Electrolyte Solutions. (Elsevier Science Publisher B.V., Amsterdam 1989) p. 318.

    Google Scholar 

  38. S. Kapusta, A. Viebeck, S.M. Wilhem and N. Hackerman, J. Electroanal. Chem 153 (1983) 157.

    Article  CAS  Google Scholar 

  39. K.J. Vetter, Electrochemical Kinetics : Theoretical and Experimental Aspects. (Academic Press, New York (1967)) pp. 115.

    Google Scholar 

  40. F. Mansfeld, H. Shih, H. Green and C.H. Tsai, in J.R. Scully, D.C. Silverman and M.W. Kendig (Eds), Analysis of EIS Data for Common Corrosion Processes. Electrochemical Impedance: Analysis and Interpretation (ASTM STP 1188, American Society for Testing and Materials, Philadelphia, 1993), p. 37

  41. J.P. Hoare, In: A.J. Bard, (eds), Encyclopedia of the Electrochemistry of the Elements Vol 2. (Marcel Dekker, New York. (1974)), pp. 282.

    Google Scholar 

  42. V.I. Birss and A. Damjanovic, J. Electrochem. Soc. 130 (1983) 1694.

    Article  CAS  Google Scholar 

  43. J.W. Schultze and K.J. Vetter, Electrochim. Acta 18 (1973) 889.

    Article  CAS  Google Scholar 

  44. L. Maya, E.W. Hagaman, R.K. Williams, X.- D. Wang, G. D. Del Cul and J. N. Fiedor, J. Phys. Chem. B 102 (1998) 1951.

    Article  CAS  Google Scholar 

  45. E. J. Rudd, B. E. Conway, Organic Electrode Processes: Kinetics, Mechanisms, and Prospects for Commercial Development. In: B. E. Conway, J. O’M. Bockris, E. Yeager (eds), Comprehensive Treatise of Electrochemistry, Vol7. (Plenum Press, New York, 1980), p. 641.

    Google Scholar 

  46. H. Wendt and G. Kreysa, Electrochemical Engineering : Science and Technology in Chemical and Other Industries. (Springer, Berlin 1999) p. 51.

    Google Scholar 

  47. A. Bagreev and T. J. Bandosz, J. Phys. Chem. B 104 (2000) 8841.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this work by the Research Administration of Kuwait University, under Grant Numbers SC04/99 and SC04/04 and the use of the ESCA VG Esca lab 200 under General Facility project GS01/01. They also acknowledge the help of the unit of Electron Microscopy for the SEM and EDS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.G. Ateya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ateya, B., AlKharafi, F., Alazab, A. et al. Kinetics of the electrochemical deposition of sulfur from sulfide polluted brines. J Appl Electrochem 37, 395–404 (2007). https://doi.org/10.1007/s10800-006-9270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9270-4

Keywords

Navigation