Skip to main content
Log in

Redox and transport behaviors of Cu(I) ions in TMHA-Tf2N ionic liquid solution

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The redox and transport behavior of monovalent copper species in an ammonium imide-type ionic liquid, trimethyl-n-hexylammonium bis((trifluoromethyl)sulfonyl)amide (TMHA-Tf2N) were examined with a micro-disc electrode to clarify its applicability to, for example, electroplating. It was found that the diffusion coefficient of Cu(I) ions in TMHA-Tf2N containing 12 mmol dm−3 Cu(I) ions was 1.2 × 10−6 cm2 s−1 and the redox potential of Cu(I)/Cu was in the potential range 0.1–0.2 V vs. I /I 3 at 50 °C. The diffusion coefficient was one order smaller than that of Cu(II) ions in aqueous solution due to the high viscosity of the ionic liquid. The diffusion coefficient of Cu(I) ion increased with rising temperature and was 1.0 × 10−5 cm2 s−1 at 112 °C, which was comparable to that of Cu(II) ions in aqueous CuSO4 solutions at ambient temperature. This is accounted for by the drastic decrease in the viscosity of the ionic liquid solution with increasing temperature. The activation energy of diffusion was estimated to be 39 kJ mol−1 in the ionic liquid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. J.S. Wilkes and M.J. Zaworotko, J. Chem. Soc. Chem. Commun. (1992) 965

  2. Koura N., Suzuki Y., Matsumoto F. (2003) Electrochemistry (formerly Denki Kagaku) 70:203

    Google Scholar 

  3. Fuller J., Carlin R.T., Osteryoung R.A. (1997) . J. Electrochem. Soc. 144:3881

    Article  CAS  Google Scholar 

  4. Bonhôte P., Dias A.-P., Armand M., Papageorgiou N., Kalyanasundaram K., Grätzel M. (1996) Inorg. Chem. 35:1168

    Article  Google Scholar 

  5. Wilkes J.S. (2002) ACS Symp. Ser. 818:214

    Article  CAS  Google Scholar 

  6. Zhao Y., Vandernoot T.J. (1998) . Electrochim. Acta 42:3

    Article  Google Scholar 

  7. Zein El Abedin S., Endres F. (2006) . ChemPhysChem 7:58

    Article  CAS  Google Scholar 

  8. Endres F. (2002). ChemPhysChem 3:144

    Article  CAS  Google Scholar 

  9. Endres F. (2004) . Z. Phys. Chem. 218:255

    CAS  Google Scholar 

  10. Ohno H. (Ed.) (2005) Electrochemical Aspects of Ionic Liquids. John Wiley & Sons, New York

    Google Scholar 

  11. Buzzeo M.C., Evans R.G., Compton R.G. (2004) . ChemPhysChem 5:1106

    Article  CAS  Google Scholar 

  12. Endres F., Zein S., Abedin El (2006) Phys. Chem. Chem. Phys. 8:2101

    Article  CAS  Google Scholar 

  13. Sun J., Forsyth M., MacFarlene D.R. (1998) . J. Phys. Chem. 102:8858

    CAS  Google Scholar 

  14. H. Matsumoto, Y. Miyazaki and H. Ishikawa, Japanese Patent Applications, 11–297 355 A (3 Apr. 1997)

  15. Murase K., Nitta K., Hirato T., Awakura Y. (2001) . J. Appl. Electrochem. 31:1089

    Article  CAS  Google Scholar 

  16. Murase K., Awakura Y. (2004). Trans. Mater. Res. Soc. Jpn. 29:55

    CAS  Google Scholar 

  17. Katase T., Kurosaki R., Murase K., Hirato T., Awakura Y. (2006) . Electrochem. Solid-State Lett. 9:C69

    Article  CAS  Google Scholar 

  18. Katase T., Onishi T., Imashuku S., Murase K., Hirato T., Awakura Y. (2005) Electrochemistry (formerly Denki Kagaku) 73:686

    CAS  Google Scholar 

  19. Bard A.J., Faulkiner L.R. (2001) Electrochemical Methods—Fundamentals and Applications, 2nd Edition. John Wiley & Sons, New York, p. 174

    Google Scholar 

  20. Awakura Y., Ebata A., Morita M., Kondo Y. (1975) . Denki Kagaku (presently Electrochemistry) 43:569

    CAS  Google Scholar 

  21. Abbott A.P. (2004). ChemPhysChem 5:1242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported in part by a Grant-in-Aid for Scientific Research (no. 16360374) from the Japan Society for the Promotion of Science (JSPS) and by Kyoto University 21st Century COE Program, United Approach to New Materials Science, from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniaki Murase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katase, T., Murase, K., Hirato, T. et al. Redox and transport behaviors of Cu(I) ions in TMHA-Tf2N ionic liquid solution. J Appl Electrochem 37, 339–344 (2007). https://doi.org/10.1007/s10800-006-9262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9262-4

Keywords

Navigation