Skip to main content
Log in

Electroactive biofilms: new means for electrochemistry

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This work demonstrates that electrochemical reactions can be catalysed by the natural biofilms that form on electrode surfaces dipping into drinking water or compost. In drinking water, oxygen reduction was monitored with stainless steel ultra-microelectrodes under constant potential electrolysis at −0.30 V/SCE for 13 days. 16 independent experiments were conducted in drinking water, either pure or with the addition of acetate or dextrose. In most cases, the current increased and reached 1.5–9.5 times the initial current. The current increase was attributed to biofilm forming on the electrode in a similar way to that has been observed in seawater. Epifluorescence microscopy showed that the bacteria size and the biofilm morphology depended on the nutrients added, but no quantitative correlation between biofilm morphology and current was established. In compost, the oxidation process was investigated using a titanium based electrode under constant polarisation in the range 0.10–0.70 V/SCE. It was demonstrated that the indigenous micro-organisms were responsible for the current increase observed after a few days, up to 60 mA m−2. Adding 10 mm acetate to the compost amplified the current density to 145 mA m−2 at 0.50 V/SCE. The study suggests that many natural environments, other than marine sediments, waste waters and seawaters that have been predominantly investigated until now, may be able to produce electrochemically active biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Costerton J.W., Lewandowski Z., Caldwell D.E., Korber D.R., Lappin-Scott H.M. (1995). Ann. Rev. Microbiol. 49:711

    Article  CAS  Google Scholar 

  2. Mollica A. (1992). Int. Biodet. Biodegrad. 29:213

    Article  CAS  Google Scholar 

  3. A. Mollica, E. Traverso and D. Thierry, in D. Thierry (Ed), Aspects of Microbially Induced Corrosion. (The Institute of Materials, London UK, 1997)

    Google Scholar 

  4. Beech I. (2004). Int. Biodeterior. Biodegrad. 53:177

    Article  CAS  Google Scholar 

  5. H.C Flemming, in E. Heitz, H.C. Flemming and W. Sand (Eds), Microbially Induced Corrosion of Materials. (Springer-Verlag, Berlin Heidelberg, 1996), p. 5.

    Google Scholar 

  6. Block J.C., Haudidier K., Paquin J.L., Miazga J., Levi Y. (1993). Biofouling 6:333

    Article  CAS  Google Scholar 

  7. Beech I., Sunner J. (2004). Curr. Op. Biotechnol. 15:181

    Article  CAS  Google Scholar 

  8. I.B. Beech and C.C. Gaylarde, Revista de Microbiol. 30 (1999) 177, and ref. therein

  9. Kim B.H., Kim H.J., Hyun M.S., Park D.H. (1999). J. Microbiol. Biotechnol. 9:127

    Article  Google Scholar 

  10. Tender L.M., Reimers C.E., Stecher H.A. III, Holmes D.E., Bond D.R., Lowy D.A., Pinobello K., Fertig S.J., Lovley D.R. (2002). Nat. Biotechnol. 20:821

    CAS  Google Scholar 

  11. Kim B.H., Park H.S., Hyun M.S., Chang I.S., Kim M., Kim B.H. (2002). Enzyme Microbial Technol. 30:145

    Article  CAS  Google Scholar 

  12. Lovley D.R., Stolz J.F., Nord G.L. Jr., Phillips E.J.P. (1987). Nature 330(6145):252

    Article  CAS  Google Scholar 

  13. Lovley D.R., Giovannoni S.J., White D.C., Champine J.E., Phillips E.J.P., Gorby Y.A., Goodwin S. (1993). Arch. Microbiol. 159:336

    Article  CAS  Google Scholar 

  14. Bond D.R., Lovley D.R. (2003). Appl. Environ. Microbiol. 69(3):1548

    Article  CAS  Google Scholar 

  15. Bond D.R., Holmes D.E., Tender L.M., Lovley D.R. (2002). Science 295:483

    Article  CAS  Google Scholar 

  16. Lin W.C., Coppi M.V., Lovley D.R. (2004). Appl. Environ. Microbiol. 70(4):2525

    Article  CAS  Google Scholar 

  17. Pham C.A., Jung S.J., Phung N.T., Lee J., Chang I.S., Kim B.H., Yi H., Chun J. (2003). FEMS Microbiol. Lett. 223(1):129

    Article  CAS  Google Scholar 

  18. Rabaey K., Verstraete W. (2005). Trends Biotechnol. 23:291

    Article  CAS  Google Scholar 

  19. Gregory K.B., Bond D.R., Lovley D.R. (2004). Environ. Microbiol. 6:596

    Article  CAS  Google Scholar 

  20. Lovley D.R. (2006). Curr. Opin. Biotechnol. 17:327

    Article  CAS  Google Scholar 

  21. Kim B.H., Park H.S., Hyun M.S., Chang I.S., Kim M., Kim B.H. (2002). Enzyme Microbial Technol. 30:145

    Article  CAS  Google Scholar 

  22. Chaudhuri S.K., Lovley D.R. (2003). Nature Biotechnol. 21:1229

    Article  CAS  Google Scholar 

  23. Pham C.A., Jung S.J., Phung N.T., Lee J., Chang I.S., Kim B.H., Yi H., Chun J. (2003). FEMS Microbiol. Lett. 223(1):129

    Article  CAS  Google Scholar 

  24. Bond D.R., Lovley D.R. (2005). Appl. Environ. Microbiol. 71(4):2186

    Article  CAS  Google Scholar 

  25. Esteve-Núñez A., Rothermich M., Sharma M., Lovley D. (2005). Environ. Microbiol. 7(5):641

    Article  CAS  Google Scholar 

  26. Lovley D.R. (2006). Nature Rev. Microbiol. 4:497

    Article  CAS  Google Scholar 

  27. Reguera G., McCarthy K.D., Mehta T., Nicoll J.S., Tuominen M.T., Lovley D.R. (2005). Nature. 435(7045):1098

    Article  CAS  Google Scholar 

  28. Lin W.C., Coppi M.V., Lovley D.R. (2004). Appl. Environ. Microbiol. 70(4):2525

    Article  CAS  Google Scholar 

  29. Bergel A., Féron D., Mollica A. (2005). Electrochem. Commun. 7:900

    Article  CAS  Google Scholar 

  30. Scotto V., Di Cintio R., Marcenaro G. (1985). Corr. Sci. 25:185

    Article  CAS  Google Scholar 

  31. Scotto V., Lai M.E. (1998). Corr. Sci. 40:1007

    Article  CAS  Google Scholar 

  32. D. Feѓon and I. Dupont, in S.A. Campbell, N. Campbell and F.C. Walsh (Eds), Developments in Marine Corrosion. (The Royal Society of Chemistry, Cambridge, 1998), p. 89.

    Google Scholar 

  33. Xinmin L., Gümpel P., Kässer M., Kreikenbohm R. (1998). Mater. Corrosion 49:897

    Article  CAS  Google Scholar 

  34. Iverson A. (2001). Brit. Corrosion J. 36:277

    Article  Google Scholar 

  35. Tender L.M., Reimers C.E., Stecher H.A., Holmes D.E., Bond D.R., Lowy D.A., Pilobello K., Fertig S.J., Lovley D.R. (2002). Nat. Biotechnol. 20(8):821

    CAS  Google Scholar 

  36. Gil G.C., Chang I.S., Kim B.H., Kim M., Jang J.K. (2003). Biosen. Bioelectron. 13:327

    Article  CAS  Google Scholar 

  37. Amaya H., Miyuki H. (1995). Corr. Eng. 44:123

    Google Scholar 

  38. Le Bozec N., Compère C., L’Her M., Laouenan A., Costa D., Marcus P. (2001). Corr. Sci. 43:765

    Article  CAS  Google Scholar 

  39. Scotto V., Lai M.E. (1998). Corr. Sci. 40:1007

    Article  CAS  Google Scholar 

  40. Dupont I., Féron D., Novel G. (1998). Int. Biodet. Biodeg. 41:13

    Article  CAS  Google Scholar 

  41. Lai M.E., Bergel A. (2000). J. Electroanal. Chem. 494:30

    Article  CAS  Google Scholar 

  42. L’Hostis V., Dagbert C., Féron D. (2003). Electrochim. Acta 48:1451

    Article  CAS  Google Scholar 

  43. Dickinson W.H., Caccavo F., Lewandowski Z. (1996). Corr. Sci. 38:1407

    Article  CAS  Google Scholar 

  44. Mollica A., Cristiani P. (2003). Water Sci. Technol. 47:45

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge efficient help from Luc Etcheverry, engineer at CNRS, Laboratoire de Génie Chimique. They also thank Dr. Christophe Jacques for initiating the work on drinking water, and INPT technician Nourredine Chateur for his help in manufacturing the micro-sensors. The part of the work dealing with compost was supported by the European project “Electrochemically active biofilms (EA-Biofilms)”, 508866 NEST-Adventure 6th FP. The part devoted to drinking water was supported by the French Réseau d’Innovation Technologique RIT-Eau (project micro-CEB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Bergel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dulon, S., Parot, S., Delia, ML. et al. Electroactive biofilms: new means for electrochemistry. J Appl Electrochem 37, 173–179 (2007). https://doi.org/10.1007/s10800-006-9250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9250-8

Key words

Navigation