Skip to main content
Log in

Kinetics of the electrochemical oxidation of organic compounds at BDD anodes: modelling of surface reactions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper presents the results of a numerical study of the kinetics of electrochemical oxidation of different organic substances at boron doped diamond (BDD).

It is well established that oxidation of organics at BDD anodes takes place in the potential region of oxygen evolution, through reaction steps in which OH radicals are involved: these radicals can react with organic compounds to give more oxidised substances, or with water to give oxygen. Because of the high reactivity of OH radicals these reactions are confined to a thin film adjacent to the electrode surface. A mathematical model was implemented, which accounts for chemical and electrochemical reactions, as well as for the transport phenomena involved in the process: the parameters of the model were derived from experimental data. The model allowed calculation of the trend with time of reactant concentration, reaction intermediates and oxidisable agents: their space profiles in the reactor were also obtained. The numerical predictions of the model were compared with experimental results obtained from galvanostatic electrolyses of different organic compounds: (a) 2,4,6-trihydroxy-1,3,5 triazine also known as cyanuric acid (CA), which is well known to be refractory to oxidation with OH; (b) atrazine (ATR) the most oxidisable precursor of CA, and (c) phenol which is considered as an OH scavenger because of its high reactivity. The agreement between experimental and model predicted data was good in all the examined conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

a :

Specific electrode area  \(a=\frac{A}{V}\) (m−1)

A :

Electrode area  (m2)

C i :

Concentration of the ith compound  (mol m−3)

d :

Nozzle diameter  (m)

D i :

Diffusivity of the ith compound  (m2 s−1)

F :

Faraday number  (C mol−1)

i :

Current density  (A m−2)

i lim :

Limiting current density  (A m−2)

k i :

OH-organic specific reaction rate  (dm3 mol−1 s−1)

k m :

Mass transfer coefficient  (m s−1)

k OH :

OH deactivation specific reaction rate  (s−1)

Re :

Reynolds number  \(Re=\frac{v d \rho}{\mu}\)

Sc :

Schmidt number  \(Sc=\frac{\mu }{\rho D_i}\)

Sh :

Sherwood number  \(Sh=\frac{k_{\rm m} d}{D_i}\)

V :

Volume of solution (m3)

δ:

Diffusion layer thickness  \(\delta =\frac{D_i}{k_{\rm m}}\) (m)

μ:

Viscosity of electrolyte  (kg m−1 s−1)

ν:

Linear velocity in the nozzle (m s−1)

ρ:

Density of electrolyte  (kg m3)

References

  1. Simond O., Schaller V., Comninellis C. (1997). Electrochim. Acta 13–14:2009

    Article  Google Scholar 

  2. Panizza M., Michaud P., Cerisola G., Comninellis C. (2001). Binny. Electrochem. Comm. 3:336

    Article  CAS  Google Scholar 

  3. Gherardini L., Michaud P., Panizza M., Cerisola G., Comninellis C. (2001). J. Electrochem Soc. D78:148

    Google Scholar 

  4. Iniesta J., Michaud P., Panizza M., Cerisola G., Aldaz A., Comninellis C. (2001). Electrochim. Acta 46:3573

    Article  CAS  Google Scholar 

  5. Polcaro A.M., Mascia M., Palmas S., Vacca A. (2005). Electrochim. Acta 50:1841

    Article  CAS  Google Scholar 

  6. Rodrigo M.A., Michaud P., Duo I., Panizza M., Cerisola G., Comninellis C. (2001). J. Electrochem. Soc. 148:D60

    Article  CAS  Google Scholar 

  7. Polcaro A.M., Mascia M., Palmas S., Vacca A. (2003). J. Appl. Electrochem. 33:885

    Article  CAS  Google Scholar 

  8. Polcaro A.M., Mascia M., Palmas S., Vacca A. (2004). Electrochim. Acta 49:649

    Article  CAS  Google Scholar 

  9. Canizares P., Garcia-Gomez J., Lobato J., Rodrigo M.A. (2004). Ind. Eng. Chem. Res. 43:1915

    Article  CAS  Google Scholar 

  10. Cañizares P., Sáez C., Lobato J., Rodrigo M.A. (2004). Ind. Eng. Chem. Res. 43:6629

    Article  Google Scholar 

  11. Cañizares P., Sáez C., Lobato J., Rodrigo M.A. (2004). Ind. Eng. Chem. Res. 43:1944

    Article  Google Scholar 

  12. Cañizares P., Lobato J., Paz R., Rodrigo M.A., Sáez C. (2005). Wat. Res. 39:2687

    Article  Google Scholar 

  13. Nasr B., Abdellatif G., Cañizares P., Sáez C., Lobato J., Rodrigo M.A. (2005). Environ. Sci. Technol. 39:7234

    Article  CAS  Google Scholar 

  14. Pelizzetti E., Maurino V., Minero C., Carlin V., Tosato M.L., Pramauro E., Zerbinati O. (1990). Environ. Sci. Technol. 24:1559

    Article  CAS  Google Scholar 

  15. Bozzi A., Dhananjeyan M., Guasaquillo I., Parra S., Pulgarin C., Weins C., Kiwi J. (2004). J. Photochem. Photobiol. A: Chem. 162:179

    Article  CAS  Google Scholar 

  16. Minero C., Pelizzetti E., Malato S., Blanco J. (1996). Solar Energy 56:411

    Article  CAS  Google Scholar 

  17. Young-Chul Oh, Jenks W.S. (2004). J. Photochem. Photobiol. A: Chem. 162:323

    Article  Google Scholar 

  18. Perry R.H., Green D.W. (1997). Perry’s Chemical Engineers’ Handbook 7th edn. Mc Graw Hill, New York

    Google Scholar 

  19. Kicuchi Y., Sunada K., Iyoda T., Hashimoto K., Fujishima A. (1997). J. Photochem. Photobiol. A: Chem. 106:51

    Article  Google Scholar 

  20. Ross F., Ross A.B. (1977). Selected Specific Rates of Reactions of Transient from Water in Aqueous Solution III Hydroxyl Radical and Perhydroxyl Radical and their Radical Ions. US Dept. of Commerce, Washington

    Google Scholar 

  21. Hoffmann R., Martin S.T., Choi W., Bahnemann D. (1995). Chem. Rev. 95:69

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Mascia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mascia, M., Vacca, A., Palmas, S. et al. Kinetics of the electrochemical oxidation of organic compounds at BDD anodes: modelling of surface reactions. J Appl Electrochem 37, 71–76 (2007). https://doi.org/10.1007/s10800-006-9217-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9217-9

Keywords

Navigation