Skip to main content
Log in

Electrodeposited MnO2 as electrocatalyst for carbohydrate oxidation

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical oxidation of dextrose, fructose and sorbitol under galvanostatic conditions was carried out using both anodically and cathodically deposited MnO2 layers on platinum and carbon. The coated electrodes showed better electrocatalytic activity for the oxidation of carbohydrates than the bare substrates. Catalytic participation of some higher valent states of manganese in electron transfer relay is speculated, which finds support in the chronopotentiogram and the observed pH-dependence of the electrochemical parameters. The current potential plots showed Tafel behaviour for the MnO2/Pt electrode. The Tafel slopes were found to be relatively high, indicating kinetic complications. The observed unusual negative values of electrochemical reaction order on MnO2/Pt electrode were accounted for by considering slow desorption of oxidation products from the electrode surface. The adsorption isotherms of dextrose and fructose on MnO2 were determined. The current efficiencies of oxidation of carbonyl and hydroxyl groups were found to be \(\sim40\) and \(\sim50\)% respectively. SEM pictures showed the cathodically deposited MnO2 on carbon to be more fine-grained and smoother than the corresponding anodic deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dillon R., Srinivasan S., Arico A.S., Antonucci V. (2004). J. Power Sources 127:112

    Article  CAS  Google Scholar 

  2. Wasmas S., Kuver A. (1999). J Electroanal Chem 461:14

    Article  Google Scholar 

  3. Lamy C., Lima A., LeRhun V., Delime F., Coutanceau C., Léger J.-M. (2002). J. Power Sources 105:283

    Article  CAS  Google Scholar 

  4. Lamy C., Belgsir E.M., Leger J.-M. (2001). J. Appl. Electrochem. 31:799

    Article  CAS  Google Scholar 

  5. Zhao X., Li W., Jiang L., Zhou W., Xin Q., Yi B., Sun G. (2004). Carbon 42:3263

    Article  CAS  Google Scholar 

  6. Zhou W.J., Song S.Q., Li W.Z., Zhou Z.H., Sun G.Q., Xin Q., Douvartzides S., Tsiakaras P. (2005). J. Power Sources 140:50

    Article  CAS  Google Scholar 

  7. Zhou W.J., Song S.Q., Li W.Z., Sun G.Q., Xin Q., Kontou S., Pouliantis K., Tsiakaras P. (2004). Solid State Ionics 175:797

    Article  CAS  Google Scholar 

  8. Gonzalez Pereira M., Davila Jimenez M., Elizalde M.P., Manzo-Robledo A., Alonso-Vante N. (2004). Electrochim. Acta. 49:3927

    Article  Google Scholar 

  9. Lamy C., Rousseau S., Belgsir E.M., Coutanceau C., Leger J.M. (2004). Electrochim. Acta. 49:3901

    Article  CAS  Google Scholar 

  10. Sen Gupta S., Mahapatra S.S., Datta J. (2004). J. Power Sources 131:169

    Article  CAS  Google Scholar 

  11. Spinacé E.V., Neto A.O., Linardi M. (2003). J Power Sources 124:426

    Article  Google Scholar 

  12. Song S., Zhou W., Tian J., Cai R., Sun G., Xin Q., Kontou S., Tsiakaras P. (2005). J Power Sources 145:266

    Article  CAS  Google Scholar 

  13. Sen Gupta S., Datta J. (2005). J. Chem. Sci. 117:337

    Article  CAS  Google Scholar 

  14. Wang J., Wasmus S., Savinell R.F. (1995). J. Electrochem. Soc. 142:4218

    Article  CAS  Google Scholar 

  15. Qi Z., Kaufman A. (2002). J. Power Sources 112:121

    Article  CAS  Google Scholar 

  16. Umeda M., Sugii H., Mohamedi M., Uchida I. (2002). Electrochemistry 70:961

    CAS  Google Scholar 

  17. Cao D., Bregens S.H. (2003). J. Power Sources 124:12

    Article  CAS  Google Scholar 

  18. Gonzalez M.J., Hable C.T., Wrighton M.S. (1998). J. Phys. Chem. B 102:9881

    Article  CAS  Google Scholar 

  19. R.T. Morrison and R.N. Boyd, ‘Organic Chemistry’, 2nd ed., (Prentice-Hall, 1971) p. 982

  20. E. Katz, A.N. Shipway and I. Willner, in W. Vielstich and G.A. Lamm (Eds), ‘Handbook of Fuel Cells – Fundamentals, Technology and Applications’, Vol. 1, Ch. 21, (John Wiley & Sons. Ltd., 2003)

  21. Shukla A.K., Suresh P., Berchmans S., Rajendran A. (2004). Current Sci. 87:455

    CAS  Google Scholar 

  22. Sasaki S., Karube I. (1999). Trends Biotechnol. 17:50

    Article  CAS  Google Scholar 

  23. Larew L.A., Johnson D.C. (1989). J. Electroanal. Chem. 262:167

    Article  CAS  Google Scholar 

  24. Aoun S.B., Dursun Z., Koga T., Bang G.S., Sotomura T., Taniguchi I. (2004). J. Electroanal. Chem. 567:175

    Article  Google Scholar 

  25. Martins A., Ferreira V., Queiros A., Aroso I., Silva F., Feliu J. (2003). Electrochem. Comm. 5:741

    Article  CAS  Google Scholar 

  26. Chikasou M., Hirabayashi T., Nakamura T., Hinoue T. (2004). Anal. Sci. 20:1171

    Article  CAS  Google Scholar 

  27. Yeo I.H., Johnson D.C. (2000). J. Electroanal. Chem. 484:157

    Article  CAS  Google Scholar 

  28. Zadeii J.M., Marioli J., Kuwana T. (1991). Anal. Chem. 63:649

    Article  CAS  Google Scholar 

  29. Casella I.G., Cataldi T.R.I., Guerrieri A., Desimoni E. (1996). Anal. Chim. Acta 335:217

    Article  CAS  Google Scholar 

  30. Eramo F.D., Marioli J.M., Arevalo A.A., Sereno L.E. (1999). Electroanalysis 11:481

    Article  Google Scholar 

  31. Park S., Chung T.D., Kim H.C. (2003). Anal. Chem. 75:3046

    Article  CAS  Google Scholar 

  32. Tominaga M., Shimazoe T., Nagashima M., Taniguchi I. (2005). Electrochem. Comm. 7:189

    Article  CAS  Google Scholar 

  33. Reim R.E., Van Effen R.M. (1986). Anal. Chem. 58:3203

    Article  CAS  Google Scholar 

  34. Zhang X., Chan K.Y., Tseung A.C.C. (1995). J. Electroanal. Chem. 386:241

    Article  Google Scholar 

  35. Wang J., Taha Z. (1990). Anal. Chem. 62:1413

    Article  CAS  Google Scholar 

  36. Bamba K., Leger J.M., Garnier E., Bachmann C., Servat K., Kokoh K.B. (2005). Electrochim. Acta. 50:341

    Article  Google Scholar 

  37. Deo R.P., Wang J. (2004). Electrochem. Comm. 6:284

    Article  CAS  Google Scholar 

  38. Lee J., Park S.-M. (2005). Anal. Chim. Acta 545:27

    Article  CAS  Google Scholar 

  39. Ojani R., Raoof J.-B., Salmany-Afagh P. (2004). J. Electroanal. Chem. 57:1

    Article  Google Scholar 

  40. Rogulski Z., Siwek H., Paleska I., Czerwinski A. (2003). J. Electroanal. Chem. 543:175

    Article  CAS  Google Scholar 

  41. Lurie J. (1975). Handbook of Analytical Chemistry. Mir Publishers, Moscow, pp. 306

    Google Scholar 

  42. A.I. Vogel, ‘Textbook of Practical Organic Chemistry’, 5th ed., (ELBS, 1989) pp. 1219–1225

  43. Bard A.J., Faulkner L.R. (1980). Electrochemical methods – Fundamentals and Applications. John Wiley & Sons, New York, pp. 455–461

    Google Scholar 

Download references

Acknowledgements

Financial assistance (No ERIP/ER/0103338/M/01) from DRDO, India, is gratefully acknowledged. One of the authors (DD) thanks DRDO for providing a JRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, D., Sen, P.K. & Das, K. Electrodeposited MnO2 as electrocatalyst for carbohydrate oxidation. J Appl Electrochem 36, 685–690 (2006). https://doi.org/10.1007/s10800-006-9126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9126-y

Keywords

Navigation