Skip to main content
Log in

Towards paired and coupled electrode reactions for clean organic microreactor electrosyntheses

  • Reviews in Applied Electrochemistry Number 61
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrosynthesis offers a powerful tool for the formation of anion and cation radical intermediates and for driving clean synthetic reactions without the need for additional chemical reagents. Recent advances in microfluidic reactor technologies triggered an opportunity for new microflow electrolysis reactions to be developed for novel and clean electrosynthetic processes. Naturally, two electrodes, anode and cathode, are required in all electrochemical processes and combining the two electrode processes into one “paired” reaction allows waste to be minimised. By decreasing the inter-electrode gap “paired” reactions may be further “coupled” by overlapping diffusion layers. The concept of “coupling” electrode processes is new and in some cases coupled processes in micro-flow cells are possible even in the absence of intentionally added electrolyte. The charged intermediates in the inter-electrode gap act as electrolyte and processes become “self-supported”. Hardly any examples of “coupled” paired electrochemical processes are known to date and both “paired” and “coupled” processes are reviewed here. Coupled electrode processes remain a challenge. In future “pairing” and “coupling” electrode processes into more complex reaction sequences will be the key to novel and clean flow-through microreactor processes and to novel chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinberg N.L. (1975) Technique of Electroorganic Synthesis, Vol. 5. Wiley, New York

    Google Scholar 

  2. Fry A.J. (1989) Synthetic Organic Electrochemistry. Wiley, New York

    Google Scholar 

  3. Volke J., Liska F. (1994) Electrochemistry in Organic Synthesis. Springer, Berlin

    Google Scholar 

  4. Grimshaw J. (2000) Electrochemical Reactions and Mechanisms in Organic Chemistry. Elsevier, Amsterdam

    Google Scholar 

  5. Pletcher D., Walsh F.C. (1993) Industrial Electrochemistry. Chapman & Hall, London, pp. 298

    Google Scholar 

  6. Ann M. Thayer (2005) Chem. Engineer. News 83:43

    Google Scholar 

  7. Watts P., Haswell S.J. (2005) Chem. Rev. 34: 235

    Article  CAS  Google Scholar 

  8. Ehrfeldt W., Hessel V., Löwe H. (2000) Microreactors: New Technology for Modern Chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  9. Doku G.N., Verboom W., Reinhoudt D.N., van den Berg A. (2005) Tetrahedron 61: 2733

    Article  CAS  Google Scholar 

  10. Yoshida J., Suga S., Nagaki A. (2005) J. Synth. Org. Chem. Jap. 63: 511

    CAS  Google Scholar 

  11. M.M. Baizer, in H. Lund and M.M. Baizer (Eds), ‚Organic Electrochemistry’, (Marcel Dekker, New York, 1991) p. 1421

  12. Paddon C.A., Pritchard G.J., Thiemann T., Marken F. (2002) Electrochem. Commun. 4: 825

    Article  CAS  Google Scholar 

  13. Baizer M.M., Hallcher R.C. (1976) J. Electrochem. Soc. 123: 809

    Article  CAS  Google Scholar 

  14. Moinet C. (1994) J. Physique IV 4(C1): 175

    CAS  Google Scholar 

  15. Chernyshev E.A., Bukhtiarov A.V., Kabanov B.K., Tomilov A.P., Rodnikov I.A., Maier N.A., Shirokii V.L., Oldekop Y.A. (1982) Soviet Electrochem. 18: 211

    Google Scholar 

  16. Park K., Pintauro P.N., Baizer M.M., Nobe K. (1985) J. Electrochem. Soc. 132: 1850

    Article  CAS  Google Scholar 

  17. D.E. Danly and C.J.H. King, in H. Lund and M.M. Baizer (Eds), ‚Organic Electrochemistry’, (Marcel Dekker, New York, 1991) p. 1317

  18. Hamann C.H., Hamnett A., Vielstich W. (1998) Electrochemistry. Wiley, New York

    Google Scholar 

  19. Baizer M.M., Danly D.E. (1980) Chemtech. 10: 161

    CAS  Google Scholar 

  20. See for example V. Hessel and H. Löwe, Chem. Ing. Tech., 76 (2004) 535

  21. Bard A.J. (1994) Integrated Chemical Systems. Wiley, New York, pp.127

    Google Scholar 

  22. See for example E. Steckhan, T. Arns, W.R. Heineman, G. Hilt, D. Hoormann, J. Jorissen, L. Kroner, B. Lewall and H. Putter, Chemosphere 43 (2001) 63

    Google Scholar 

  23. Compton R.G., Foord J.S., Marken F. (2003) Electroanalysis. 15: 1349

    Article  CAS  Google Scholar 

  24. Hayfield P.C.S. (2002) Development of a New Material – Monolithic Ti4O7 Ebonex Ceramic. Royal Society of Chemistry, London

    Google Scholar 

  25. N.L. Weinberg, U.S. Patent 4,478,694

  26. Shono T., Kise N., Suzumoto T., Morimoto T. (1986) J. Am. Chem. Soc. 108:4676

    Article  CAS  Google Scholar 

  27. Horii D., Atobe M., Fuchigami T., Marken F. (2005) Electrochem. Commun. 7: 35

    Article  CAS  Google Scholar 

  28. R. Horcajada, M. Okajima, S. Suga and J. Yoshida, Chem. Commun. (2005) 1303

  29. Belmont C., Girault H.H. (1994) J. Appl. Electrochem. 24:719

    Article  CAS  Google Scholar 

  30. Ferringo R., Josserand J., Brevet P.F., Girault H.H. (1998) Electrochim. Acta. 44: 587

    Article  Google Scholar 

  31. Aoki K., Morita M., Niwa O., Tabei H. (1988) J. Electroanal. Chem. 256: 269

    Article  CAS  Google Scholar 

  32. Fosser B., Amatae C., Bartelt J., Wightman R.M. (1991) Anal. Chem. 63: 1403

    Article  Google Scholar 

  33. Bard A.J., Faulkner L.R. (2001) Electrochemical Methods. Wiley, New York, pp. 29

    Google Scholar 

  34. Brett C.M.A., Brett A.M.O. (1993) Electrochemistry, Principles, Methods, and Applications. Oxford University Press, Oxford

    Google Scholar 

  35. Marken F., Akkermans R.P., Compton R.G. (1996) J. Electroanal. Chem. 415: 55

    Article  Google Scholar 

  36. Sur U.K., Marken F., Rees N., Coles B.A., Compton R.G., Seager R. (2004) J. Electroanal. Chem. 573: 175

    Article  CAS  Google Scholar 

  37. Rieger P.H. (1994) Electrochemistry. Chapman & Hall, London

    Google Scholar 

  38. H. Pütter and H. Hannebaum, DE 19, (13-11-1997), 618, 854

  39. (a) E. Steckhan, T. Arns, W.R. Heineman, G. Hilt, D. Hoormann, J. Jorissen, L. Kroner, B. Lewall, H. Pütter, Chemosphere 43 (2001) 63. (b) http://www.electrochem.cwru.edu/ed/encycl/art-o01-org-ind.htm (N.L. Weinberg, ‚Industrial Organic Electrosynthesis’, 2002, accessed 9th January 2006)

  40. Park K., Pintauro P.N., Baizer M.M., Nobe K. (1985) J. Electrochem. Soc. 132: 1850

    Article  CAS  Google Scholar 

  41. Yu J.C., Baizer M.M., Nobe K. (1988) J. Electrochem. Soc. 135: 1400

    Article  CAS  Google Scholar 

  42. Jalbout A.F., Zhang S.H. (2002) Acta. Chim. Slovencia 49: 917

    CAS  Google Scholar 

  43. Ishifune M., Yamashita H., Matsuda M., Ishida H., Yamashita N., Kera Y., Kashimura S., Masuda H., Murase H. (2001) Electrochim. Acta 46: 3259

    Article  CAS  Google Scholar 

  44. Belmont C., Girault H.H. (1995) Electrochim. Acta. 40: 2505

    Article  CAS  Google Scholar 

  45. Kim S., Uchiyama R., Kitano Y., Tada M., Chiba K. (2001) J. Electroanal. Chem. 507: 152

    Article  CAS  Google Scholar 

  46. Hu K., Niyazymbetau M.E., Evans D.H. (1995) Tetrahed. Lett. 36: 7027

    Article  CAS  Google Scholar 

  47. Ito S., Katayama R., Kunai A., Sasaki K. (1989) Tetrahed. Lett. 30: 205

    Article  CAS  Google Scholar 

  48. Hilt G. (2003) Angew. Chem. Int. Ed. Engl. 42: 1720

    Article  CAS  Google Scholar 

  49. Batanero B., Barba F. (2002) J. Org. Chem. 67: 2369

    Article  CAS  Google Scholar 

  50. Batanero B., Barba F. (2004) J. Org. Chem. 69: 2423

    Article  CAS  Google Scholar 

  51. Li W., Nonaka T., Chou T.C. (1999) Electrochemistry 67: 4

    CAS  Google Scholar 

  52. Li W., Nonaka T. (1999) J. Electrochem. Soc. 146: 592

    Article  CAS  Google Scholar 

  53. Li W., Nonaka T. (1999) Electrochim. Acta 44: 2605

    Article  CAS  Google Scholar 

  54. Shen Y., Atobe M., Li W., Nonaka T. (2003) Electrochim. Acta 48: 1041

    Article  CAS  Google Scholar 

  55. Chou C.F., Chou T.C. (2003) J. Appl. Electrochem. 33: 741

    Article  CAS  Google Scholar 

  56. Udupa H.V.K., Krishnan V., Muthukumaran A. (1978) J. Electrochem. Soc. 125: C169

    Article  Google Scholar 

  57. Kass N.C., Limborg F., Glens K. (1952) Acta Chem. Scand. 6: 531

    Article  Google Scholar 

  58. He P., Watts P., Marken F., Haswell S.J. (2005) Electrochem. Commun. 7: 918

    Article  CAS  Google Scholar 

  59. Amatore C., Brown A.R. (1996) J. Am. Chem. Soc. 118: 1482

    Article  CAS  Google Scholar 

Download references

Acknowledgements

FM gratefully acknowledges support from the Tokyo Institute of Technology Venture Business Laboratory during a visit in August 2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Marken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paddon, C.A., Atobe, M., Fuchigami, T. et al. Towards paired and coupled electrode reactions for clean organic microreactor electrosyntheses. J Appl Electrochem 36, 617–634 (2006). https://doi.org/10.1007/s10800-006-9122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9122-2

Key words:

Navigation