Skip to main content
Log in

Effects of ball milling on the physical and electrochemical characteristics of nickel hydroxide powder

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel hydroxide powder was modified by the method of ball milling, and the physical properties of both the ball-milled and un-milled nickel hydroxide were characterized by scanning electron microscopy, specific surface area, particle size distribution and X-ray diffraction. It was found that the ball milling processing could obviously increase the surface area, decrease the particle and crystallite size, and reduce the crystallinity of β-Ni(OH)2, which was advantageous to the improvement of the electrochemical activity of nickel hydroxide powder. Electrochemical performances of pasted nickel electrodes using the ball-milled nickel hydroxide as an active material were investigated, and were compared with those of the electrodes prepared with the un-milled nickel hydroxide. Charge/discharge tests showed that the ball-milled nickel hydroxide electrodes exhibited better performances in the charging efficiency, specific discharge capacity, active material utilization and discharge voltage. The improvement of the performances of β-Ni(OH)2 through ball milling could be attributed to the better reaction reversibility, higher coulombic efficiency, higher oxygen evolution potential and lower electrochemical impedance, as indicated by the cyclic voltammetry and electrochemical impedance spectroscopy studies. Thus, ball milling was an effective method to modify the physical properties and enhance the electrochemical performances of nickel hydroxide powder for the active material of rechargeable alkaline nickel batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shukla A.K., Venugopalan S. and Hariprakash B., (2001). J.Power Sources 100: 125

    Article  CAS  Google Scholar 

  2. Köhler U., Antonius C. and Bäuerlein P. (2004). J.Power Sources 127 : 45

    Article  CAS  Google Scholar 

  3. Oshitani M., Yufu H., Takashima K., Tsuji S. and Matsuma Y., (1989). J.Electrochem. Soc. 136: 1590

    Article  CAS  Google Scholar 

  4. Watanabe K., Kikuoka T. and Kumagai N., (1995). J.Appl. Electrochem. 25: 219

    Article  CAS  Google Scholar 

  5. Taucher-Mautner W. and Kordesch K.(2004). J.Power Sources 132: 275

    Article  CAS  Google Scholar 

  6. I. Munehisa and A. Norikatsu, Eur. Patent No. EP 0523284 (1993)

  7. Song Q.S., Li Y.Y. and Chan S.L.I.(2005). J.Appl.Electrochem. 35 : 157

    Article  CAS  Google Scholar 

  8. Kamath P.V. and Subbanna G.N., (1992). J.Appl.Electrochem. 22: 478

    Article  CAS  Google Scholar 

  9. Gille G., Albrecht S., Meese-Marktscheffel J., Olbrich A. and Schrumpf F., (2002). Solid State Ionics 148: 269

    Article  CAS  Google Scholar 

  10. Song Q.S.,Tang Z.Y.,Guo H.T. and Chan S.L.I.(2002). J.Power Sources 112 : 428

    Article  CAS  Google Scholar 

  11. Bernard M.C., Cortes R., Keddam M., Takenouti H., Bernard P. and Senyarich S. (1991). J.Power Sources 63: 247

    Article  Google Scholar 

  12. Delmas C. and Tessier C. (1997). J.Mater.Chem. 7: 1439

    Article  CAS  Google Scholar 

  13. Jayashree R.S., Kamath P.V. and Subbanna G.N. (2000). J.Electrochem.Soc. 147: 2029

    Article  CAS  Google Scholar 

  14. Singh A.Kr., Singh A.K. and Srivastava O.N.(1993). Int.J.Hydrogen Energy 18: 567

    Article  CAS  Google Scholar 

  15. Rongeat C. and Roué L. (2004). J.Power Sources 132 : 302

    Article  CAS  Google Scholar 

  16. Obrovac M.N., Mao O. and Dahn J.R.(1998). Solid State Ionics 112 : 9

    Article  CAS  Google Scholar 

  17. Ning L.J.,Wu Y.P.,Fang S.B., Rahm E. and Holze R. (2004). J.Power Sources 133: 229

    Article  CAS  Google Scholar 

  18. Oliva P., Leonardi J., Laurent J.F., Delmas C., Braconnier J.J., Figlarz M., Fievet F. and Guibert A. (1982). J.Power Sources 8: 229

    Article  CAS  Google Scholar 

  19. Faure C., Delmas C. and Fouassier M. (1991). J.Power Sources 35 : 279

    Article  CAS  Google Scholar 

  20. Tessier C., Haumesser P.H., Bernard P. and Delmas C., (1999). J.Electrochem. Soc. 146: 2059

    Article  CAS  Google Scholar 

  21. Deabate S., Fourgeot F. and Henn F.(2000). J.Power Sources 87 : 125

    Article  CAS  Google Scholar 

  22. Barnard R., Randell C.F. and Tye F.L. (1980). J.Appl.Electrochem. 10: 109 and 127

    Google Scholar 

  23. Weidner J.W. and Timmerman P. (1994). J.Electrochem.Soc. 141: 346

    Article  CAS  Google Scholar 

  24. Watanabe K. and Kumagai N. (1998). J.Power Sources 76: 167

    Article  CAS  Google Scholar 

  25. Motupally S., Streinz C.C. and Weidner J.W. (1998). J.Electrochem.Soc. 145: 29

    Article  CAS  Google Scholar 

  26. Oshitani M., Sasaki Y. and Takashima K. (1984). J.Power Sources 12 : 219

    Article  CAS  Google Scholar 

  27. Oshitani M., Takayama T., Takashima K. and Tsuji S. (1986). J.Appl. Electrochem. 16: 403

    Article  CAS  Google Scholar 

  28. Singh D.(1998). J.Electrochem. Soc. 145 : 116

    Article  CAS  Google Scholar 

  29. Lenhart S.J., Macdonald D.D. and Pound B.G. (1988). J.Electrochem.Soc. 135: 1063

    Article  CAS  Google Scholar 

  30. Ta K.P. and Newman J. (1999). J.Electrochem.Soc. 146: 2769

    Article  CAS  Google Scholar 

  31. Corrigan D.A. and Bendert R.M. (1989). J.Electrochem.Soc. 136 : 723

    Article  CAS  Google Scholar 

  32. Reid M.A. and Loyselle P.L.(1991). J.Power Sources 36: 285

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tianjin Municipal Natural Science Foundation of China (Grant No. 05YFJMJC09900), and by the Project-sponsored by SRF for ROCS, the Ministry of Education of China (Grant No. 2004-176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q.S. SONG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SONG, Q., CHIU, C. & CHAN, S. Effects of ball milling on the physical and electrochemical characteristics of nickel hydroxide powder. J Appl Electrochem 36, 97–103 (2006). https://doi.org/10.1007/s10800-005-9045-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9045-3

Key words:

Navigation