Skip to main content

Advertisement

Log in

Application of a solid polymer electrolyte reactor to remove nitrate ions from wastewater

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The application of a zero gap solid polymer electrolyte (ZGSPE) reactor to deminealise nitrate ions in aqueous wastewater is described. The following performance data for the reduction of a simulated alkaline solution with 16.1 mM nitrate ions under galvanostatic operation were achieved: percentage of nitrate removal up to 100%, rates of nitrate removal up to 0.057 mol cm−2 h−1, space–time yields up to 5.4 kg m−3 h−1, current efficiencies up to 24.5% and energy consumption between 40.1 and 63.3 kW h kg−1. The beneficial effects of higher temperatures and nitrate ion concentrations and using a suitable electrolyte flow rate on the activity, selectivity and efficiency is reported. PdRh1.5/Ti mini-mesh electrode used in the study was stable after a cumulative use of 1000 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.F. Gray (1994) ‘Drinking Water Quality: Problems and Solutions’ John Wiley and Sons Ltd. Chichester 21

    Google Scholar 

  2. J.O’M. Bockris J. Kim (1997) J. Appl. Electrochem. 27 623 Occurrence Handle10.1023/A:1018419316870 Occurrence Handle1:CAS:528:DyaK2sXktVeltbo%3D

    Article  CAS  Google Scholar 

  3. M. Badea A. Amine G. Palleschi D. Moscone G. Volpe Curulli A. (2001) J. Electronal. Chem. 509 66 Occurrence Handle10.1016/S0022-0728(01)00358-8 Occurrence Handle1:CAS:528:DC%2BD3MXltFOhsr0%3D

    Article  CAS  Google Scholar 

  4. K. Lüdtke K.-V. Peinemann V. Kasche R.-D. Behling (1998) J.␣Membrane Sci. 151 3 Occurrence Handle10.1016/S0376-7388(98)00227-0

    Article  Google Scholar 

  5. http://www.ohd.hr.state.or.us/dwp/docs/fact/ammonia.pdf

  6. EEC Council Recommendations (1987)

  7. EEC Council Directive 98/83/EC (1998)

  8. M. Paidar K. Bouzek H. Bergman (2002) Chem. Eng. J. 85 99 Occurrence Handle10.1016/S1385-8947(01)00158-9 Occurrence Handle1:CAS:528:DC%2BD38XktFGiuw%3D%3D

    Article  CAS  Google Scholar 

  9. http://www.lanl.gov/projects/nitrate/Other.htm

  10. K. Bouzek M. Paidar A. Sadilkova H. Bergmann (2001) J. Appl. Electrochem. 31 1185 Occurrence Handle1:CAS:528:DC%2BD38XlsFKi

    CAS  Google Scholar 

  11. C.-P. Huang H.-W. Wang P.-C. Chiu (1998) Wat. Res. 32 2257 Occurrence Handle1:CAS:528:DyaK1cXltVeht7s%3D

    CAS  Google Scholar 

  12. A. Kapoor T. Viraraghavan (1997) J. Environ. Eng. 4 371

    Google Scholar 

  13. M. Paidar I. Rousar K. Bouzek (1999) J. Appl. Electrochem. 29 611 Occurrence Handle1:CAS:528:DyaK1MXjvVKgtrc%3D

    CAS  Google Scholar 

  14. K.M. Hiscock J.W. Lloyd D.N. Lemer (1991) Wat. Res. 25 1099 Occurrence Handle1:CAS:528:DyaK3MXlsVWkt78%3D

    CAS  Google Scholar 

  15. C.L. Clement N.A. Nado A. Katty M. Bernard A. Deneuville C. Comninellis A. Fujishima (2003) Diamond Related Mater. 12 606

    Google Scholar 

  16. J.O’M. Bockris J. Kim (1996) J. Electrochem. Soc. 143 3801 Occurrence Handle1:CAS:528:DyaK2sXhsFeisQ%3D%3D

    CAS  Google Scholar 

  17. J.D. Genders D. Hartsough D.I. Hobbs (1996) J. Appl. Electrochem. 26 1 Occurrence Handle1:CAS:528:DyaK28XpvFWhsA%3D%3D

    CAS  Google Scholar 

  18. E.E. Kalu R.E. White D.I. Hobbs (1996) J. Electrochm. Soc. 143 3094 Occurrence Handle1:CAS:528:DyaK28XmvVGnsr0%3D

    CAS  Google Scholar 

  19. D.R. Lide and H.P.R. Frederikse (eds), CRC Handbook of Chemistry and Physics, 78th ed., (CRC Press, New York, 1997) Section 8

  20. W.J. Plieth, in A.J. Bard (Ed.), ‘Encyclopaedia of Electrochemistry of the Elements’, (Marcel Dekker, 1978), Vol. VIII, Chapter 5

  21. G.E. Dima A.C.A. Vooys Particle de M.T.M. Koper (2003) J. Electroanal. Chem. 554–555 15

    Google Scholar 

  22. M.T. Groot de M.T.M. Koper (2004) J. Electroanal. Chem. 562 81

    Google Scholar 

  23. J.F.E. Gootzen P. G.J.M. Peeters J.M.B. Dukers L. Lefferts W. Visscher J.A.R. Veen van (1997) J. Electroanal. Chem. 434 171 Occurrence Handle1:CAS:528:DyaK2sXntVOksLw%3D

    CAS  Google Scholar 

  24. IONEX LTD., British Patent 2,348,209 (2001)

  25. B.R. Scharifker J. Mostany A. Serruya (2000) Electrochem. Commun. 2 448 Occurrence Handle1:CAS:528:DC%2BD3cXjvFWqtLw%3D

    CAS  Google Scholar 

  26. S.-H. Cheng Y.O. Su (1994) Inorg. Chem. 33 5847 Occurrence Handle1:CAS:528:DyaK2cXmvVynu74%3D

    CAS  Google Scholar 

  27. D. Pletcher Z. Poorabedi (1979) Electrochim. Acta 24 1253 Occurrence Handle1:CAS:528:DyaL3cXhvVyisLs%3D

    CAS  Google Scholar 

  28. H.-L. Li D.H. Robertson J.A. Chambers (1988) J. Electrochem. Soc. 135 1154 Occurrence Handle1:CAS:528:DyaL1cXksVGjur8%3D

    CAS  Google Scholar 

  29. A.I. Vogel, ‘Vogel’s Textbook of Quantitative Chemical Analysis’, 5th ed., Revised by G.H. Joffery, J. Bassett, J. Mendham and R.C. Denney, Longman Scientific & Technical (1997) p. 408 or pp. 402–403 for determination of hydroxylamine or hadrazine, respectively

  30. F. Goodridge K. Scott (1995) ‘Electrochemical Process Engineering’ Plenum Press New York 15–191

    Google Scholar 

  31. D. Pletcher F.C. Walsh (1990) ‘Industrial Electrochemistry’ EditionNumber2 Chapman and Hall New York

    Google Scholar 

  32. T. Ohmori M.S. El-Deab M. Osawa (1999) J. Electroanal. Chem. 470 46 Occurrence Handle1:CAS:528:DyaK1MXltlKjtLs%3D

    CAS  Google Scholar 

  33. D.W. McKee A.J. Scarpellino SuffixJr. I.F. Danzig M.S. Pak (1969) J. Electrochem. Soc. 116 562 Occurrence Handle1:CAS:528:DyaF1MXht1Sntbw%3D

    CAS  Google Scholar 

  34. N. Alonso-Vante (2003) ‘Catalysis and Electrocatalysis at Nonoparticle Surfaces’ A. Wieskowki E.R. Sauliroua C. Vayeras (Eds) Catalysis and Electrocatalysis at Nanoparticle Surfaces Marcel Dekker New York

    Google Scholar 

  35. L. Guczi (1984) J. Mol. Catal. 25 13 Occurrence Handle1:CAS:528:DyaL2cXlslSnsb8%3D

    CAS  Google Scholar 

  36. O.M. Ilinitch L.V. Nosova V.V. Gorodetskii V.P. Ivanov S.N. Trukhan E.N. Gribov S.V. Bogdanov F.P. Cuperus (2000) J. Mol. Catal. A: Chemical 158 237 Occurrence Handle1:CAS:528:DC%2BD3cXkvFylurY%3D

    CAS  Google Scholar 

  37. S.R. Gavagnin F. Pinna E. Modaferri S. Perathoner G. Centi M. Marella M. Tomaselli (2002) Catal. Today 55 139

    Google Scholar 

  38. A.C.A. Vooys de M.T.M. Koper R.A. Santen Particlevan J.A.R. Veen Particlevan (2001) Electrochim. Acta 46 923

    Google Scholar 

  39. A.S. Koparal U.B. Ogutveren (2002) J. Hazardous Mater. 89 83 Occurrence Handle1:CAS:528:DC%2BD3MXoslGntbg%3D

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the United Kingdom Engineering and Physical Sciences Research Council (EPSRC) for funding. The work was performed in research facilities provided through an EPSRC/HEFCE Joint Infrastructure Fund award (No. JIF4NESCEQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, H., Scott, K. & Christensen, P. Application of a solid polymer electrolyte reactor to remove nitrate ions from wastewater. J Appl Electrochem 35, 551–560 (2005). https://doi.org/10.1007/s10800-005-1519-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-1519-9

Key words

Navigation