Skip to main content

Advertisement

Log in

Valuing information technology infrastructures: a growth options approach

  • Published:
Information Technology and Management Aims and scope Submit manuscript

Abstract

Decisions to invest in information technology (IT) infrastructure are often made based on an assessment of its immediate value to the organization. However, an important source of value comes from the fact that such technologies have the potential to be leveraged in the development of future applications. From a real options perspective, IT infrastructure investments create growth options that can be exercised if and when an organization decides to develop systems to provide new or enhanced IT capabilities. We present an analytical model based on real options that shows the process by which this potential is converted into business value, and discuss middleware as an example technology in this context. We derive managerial implications for the evaluation of IT infrastructure investments, and the main findings are: (1) the flexibility provided by IT infrastructure investment is more valuable when uncertainty is higher; (2) the cost advantage that IT infrastructure investment brings about is amplified by demand volatility for IT-supported products and services; (3) in duopoly competition, the value of IT infrastructure flexibility increases with the level of product or service substitutability; and (4) when demand volatility is high, inter-firm competition has a lower impact on the value of IT infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.A. Agha, Adaptive middleware. Communications of the ACM 45(6) (2002) 30–32.

    Article  Google Scholar 

  2. M. Amram and N. Kulatilaka, Disciplined decisions. Harvard Business Review 77(1) (1999) 95–104.

    Google Scholar 

  3. Y. Au and R.J. Kauffman, Should we wait? Network externalities, compatibility, and electronic billing adoption. Journal of Management Information Systems 18(2) (2001) 47–64

    Google Scholar 

  4. I. Bardhan, S. Bagchi and R. Sougstad, Prioritizing a portfolio of information technology investment projects. Journal of Management Information Systems 21(2) (2004) 33–60.

    Google Scholar 

  5. A. Barua, C.H. Kriebel and T. Mukhopadhyay, An economic analysis of strategic information technology investments. MIS Quarterly 15(3) (1991) 313–331.

    Article  Google Scholar 

  6. A. Barua, C.H. Kriebel and T. Mukhopadhyay, IT and business value: An analytical and empirical investigation. Information Systems Research 6(1) (1995) 3–23.

    Google Scholar 

  7. M. Benaroch, Managing IT investment risk: A real options perspective. Journal of Management Information Systems 19(2) (2002) 43–84.

    Google Scholar 

  8. M. Benaroch and R.J. Kauffman, A case for using real options pricing analysis to evaluate IT project investments. Information Systems Research 10(1) (1999) 70–86

    Google Scholar 

  9. P.A. Bernstein, Middleware. Communications of the ACM 39(2) (1996) 86–98.

    Article  Google Scholar 

  10. A. Bharadwaj, A resource-based perspective on IT capacity and firm performance: An empirical investigation. MIS Quarterly 24(1) (2000) 169–196.

    Article  Google Scholar 

  11. K. Bobrer, V. Johnson, A. Nilsson and B. Rubin, Business process components for distributed object applications. Communications of the ACM 41(6) (1998) 43–48.

    Article  Google Scholar 

  12. E. Brynjolfsson, The productivity paradox of IT. Communications of the ACM 16(12) (1993) 66–77.

    Article  Google Scholar 

  13. Y.E. Chan, IT Value: The great divide between qualitative and quantitative and individual and organizational measures. Journal of Management Information Systems 16(4) (2000) 255–261.

    Google Scholar 

  14. J.K. Cheung and N.A. Bagranoff, Assessing intangible costs and benefits in the systems decision via option pricing theory. Journal of Information System 5(1) (1991) 36–47.

    Google Scholar 

  15. E.K. Clemons and B. Gu, Justifying contingent IT investments: Balancing the need for speed of action with certainty before action. Journal of Management Information Systems 20(2) (2003) 11–48.

    Google Scholar 

  16. H. D’antoni, Behind the numbers: How to be sure tech dollars pay off. Information Week December 8 (2003) 72–74.

    Google Scholar 

  17. R.A. D’aveni, Coping with hypercompetition: Utilizing the new 7S framework. Academy of Management Executive 9(3) (1995) 45–57.

    Google Scholar 

  18. S. Devaraj and R. Kohli, Performance impacts of information technology: Is actual usage the missing link? Management Science 49(3) (2003) 273–289.

    Article  Google Scholar 

  19. A. Dixit and R. Pindyck, Investment under Uncertainty (Princeton U. Press: Princeton, NJ, 1994).

    Google Scholar 

  20. B.L. Dos santos, Justifying investment in new information technologies. Journal of Management Information Systems 7(4) (1991) 71–90.

    Google Scholar 

  21. N.B. Duncan, Capturing flexibility of information technology infrastructure: A study of resource characteristics and their measure. Journal of Management Information Systems 12(2) (1995) 37–57.

    Google Scholar 

  22. S.R. Grenadier and A.M. Weiss, Investment in technological innovation: An option pricing approach. Journal of Financial Economics 44(3) (1997) 397–416.

    Article  Google Scholar 

  23. N. Gustafson and J. Luft, Valuing strategic flexibility in information technology investments: When do subjective valuation and real options analysis differ? Working paper, Eli Broad School of Business, Michigan State University, East Lansing, MI, 2002.

  24. L. Hitt and E. Brynjolfsson, Productivity, business profitability, and consumer surplus: Three different measures of IT value. MIS Quarterly 20(2) (1996) 121–142.

    Article  Google Scholar 

  25. J.C. Hull, Options, Futures, and Other Derivatives, 3rd Edition, (Englewood Cliffs: Prentice Hall, NJ, 1996).

    Google Scholar 

  26. A. Kambil, J. Henderson and H. Mohsenzadeh, Strategic management of IT investments: An options perspective, Chapter 9, in: Strategic IT Management: Perspectives on Organizational Growth and Competitive Advantage, R.D. Banker, R.J. Kauffman and M.A. Mahmood (eds.) (Idea Group Publishing: Harrisburg, PA, 1993).

    Google Scholar 

  27. R.J. Kauffman and X. Li, Technology competition and optimal investment timing: A real options approach. IEEE Transactions on Engineering Management 52(1) (2005) 15–29.

    Article  Google Scholar 

  28. T.R. Kayworth, D. Chatterjee and V. Sambamurthy, Theoretical justification for IT infrastructure investments. Information Resources Management Journal 14(1) (2001) 5–13.

    Google Scholar 

  29. S. Kekre and T. Mukhopadhyay, Strategic and operational benefits of electronic integration in B2B procurement processes. Management Science 48(10) (2002) 1301–1313.

    Article  Google Scholar 

  30. W.C. Kester, Today’s options for tomorrow’s growth. Harvard Business Review 62(2) (1984) 153–160.

    Google Scholar 

  31. B. Kogut and N. Kulatilaka, Capabilities as real options. Organization Science 12(6) (2001) 744–758.

    Article  Google Scholar 

  32. N. Kulatilaka and S. Marks, The strategic value of flexibility: Reducing the ability to compromise. American Economic Review 78(3) (1988) 574–580.

    Google Scholar 

  33. N. Kulatilaka and E.C. Perotti, Strategic growth options. Management Science 44(8) (1998) 1021–1031.

    Google Scholar 

  34. R. Kumar, A note on project risk and option values of investments in information technologies. Journal of Management Information Systems 13(1) (1996) 187–193.

    Google Scholar 

  35. R. Kumar, Understanding DSS value: An options Perspective. Omega 27(3) (1999) 295–304.

    Article  Google Scholar 

  36. T. Luehrman, Investment opportunities as real options: Getting started with the numbers. Harvard Business Review 76(4) (1998) 51–64.

    Google Scholar 

  37. T. Luehrman, Strategy as a portfolio of real options. Harvard Business Review 76(5) (1998) 89–99.

    Google Scholar 

  38. T. Mukhopadhyay, S. Rajiv and K. Srinivasan, IT impact on process output and quality. Management Science 43(12) (1997) 1645–1660.

    Article  Google Scholar 

  39. OMG, Success story of Wells Fargo Bank, www.corba.org. Accessed February (2007).

  40. D. Orenstein, CORBA adoption grows, but slowly, Computerworld, September 7 (1998) 45.

  41. S. Panayi and L. Trigeorgis, Multi-stage real options: The cases of IT infrastructure and international bank expansion. Quarterly Review of Economics and Finance 38(3) (Part 2, 1998) 675–692.

    Article  Google Scholar 

  42. J.K. Patel and C.B. Read, Handbook of the Normal Distribution. (Marcel Dekker: New York, NY, 1996).

    Google Scholar 

  43. A. Patrizio, CORBA for credit card account info, Information Week, December 9 (1996) 28–31.

  44. T.J.W. Renkema, The IT Value Quest: How to Capture the Business Value of IT-Based Infrastructure. (John Wiley and Sons: New York, NY, 2000).

    Google Scholar 

  45. S.S. Roach, Services under siege: The restructuring imperative. Harvard Business Review 69(5) (1991) 82–91.

    Google Scholar 

  46. J.W. Ross and C.M. Beath, New approaches to IT investment. Sloan Management Review 43(2) (2002) 51–59.

    Google Scholar 

  47. V. Sambamurthy, A. Bharadwaj and V. Grover, Shaping agility through digital options: Reconceptualizing the role of IT in contemporary firms. MIS Quarterly 27(2) (2003) 237–263.

    Google Scholar 

  48. E.S. Schwartz and C. Zozaya-Gorostiza, Investment under uncertainty in IT: Acquisition and development projects. Management Science 49(1) (2003) 57–70.

    Article  Google Scholar 

  49. G. Sick, Capital Budgeting with Real Options. Monograph, Salomon Brothers Center for the Study of Financial Institutions. Stern School of Business, NYU, New York, NY, 1989.

    Google Scholar 

  50. H.A. Simon, Rational Decision-Making in Business Organizations, Nobel Memorial Lecture, Stockholm, Sweden (1978).

  51. C. Sliwa, Danish bank blazes web services trail, Computerworld 37(7) (February 17, 2003) 10.

  52. J. Smith and K. McCardle, Options in the real world: Some lessons learned in evaluating oil and gas investments. Operations Research 47(1) (1999) 1–15.

    Google Scholar 

  53. H.T.J. Sumit and L.A. Ankum, A real options and game-theoretic approach to corporate investment strategy under competition. Financial Management 22(3) (1993) 241–250.

    Article  Google Scholar 

  54. P. Tallon, R.J. Kauffman, H.C. Lucas, JR., A. Whinston and K. Zhu, Using real options analysis for evaluating uncertain investments in IT: Insights from the ICIS 2001 debate. Communications of AIS 9 (2002) 136–167.

    Google Scholar 

  55. A. Taudes, M. Feurstein and A. Mild, Options analysis of software platform decisions: A case study. MIS Quarterly 24(2) (2000) 227–243.

    Article  Google Scholar 

  56. M. Thatcher and J. Oliver, The impact of information technology investments on a firm’s production efficiency, product quality and productivity. Journal of Management Information Systems 18(2) (2001) 17–46.

    Google Scholar 

  57. M. Thatcher and D. Pingry, An economic model of product quality and IT value. Information Systems Research 15(3) (2004) 268–286.

    Article  Google Scholar 

  58. L. Trigeorgis, Real Options. (MIT Press: Cambridge, MA, 1996).

    Google Scholar 

  59. P. Weill and M. Broadbent, Leveraging the New Infrastructure: How Market Leaders Capitalize on IT. (Harvard Business School Press: Boston, MA, 1998).

    Google Scholar 

  60. K. Zhu and J.P. Weyant, Strategic decisions of new technology adoption under asymmetric information: A game-theoretic model. Decision Science 34(4) (2003) 643–675.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge useful input received on an earlier version of this article from the participants at the 1999 Workshop on Information Technology and Systems (WITS). An early version won the “best paper award” at WITS in 1999. We also thank Indranil Bardhan, Michel Benaroch, Sri Narasimhan, Sumit Sarcar, Hamid Mohtadi, Xiaotong Li, Kevin Zhu and the anonymous reviewers for helpful input. We also acknowledge Varghese Jacob, Editor-in-Chief of Information Technology and Management, for his interest in this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhi Dai.

Appendices

Appendix

Mathematical representation of the investment value function

Several derivations illustrate how we arrived at the main results. Substituting Eq. (7) for \({\pi^{\hbox {INVESTMENT}}}\) in Eq. (8), we represent the value function as:

$$ \begin{array}{l} V^{\hbox {INVESTMENT}}(\theta _0,\sigma)\ =\ E(\pi ^{\hbox {INVESTMENT}}\vert \theta\ \ge\ \theta_1)\cdot \hbox {prob}(\theta\ \ge\ \theta _1)-K,\\ =\int_{\theta _1}^\infty {\frac{(p-c)^2\theta ^2-4fp(p-c)}{4f}\hbox {d}[F(\theta )]}\ -\ K\\ =\int_{\theta _1}^\infty {\frac{(p-c)^2\theta ^2\ -\ 4fp(p-c)}{4f}\cdot f(\theta)\cdot \hbox {d}\theta}\ -\ K\\ \end{array} $$
(A1)

where θ1 is the same as in Eq. (6). F(θ) is the cumulative density function and f(θ) is the probability density function of θ. When θ follows the log-normal distribution \({\ln(\theta)\sim N\left({\ln(\theta_0)-\frac{1}{2}\sigma ^2,\sigma ^2}\right)}\), we substitute \({\theta =\hbox {e}^x}\) in Eq. (A1) to arrive at:

$$ \begin{array}{l} V^{\hbox {INVESTMENT}}(\theta _0,\sigma)\ =\ \int_{\ln \theta _1}^\infty {\frac{(p-c)^2(\hbox {e}^x)^2-4fp(p-c)}{4f}\cdot \hbox {d}[N(x)]}\ -\ K \\ =\int_{\ln \theta _1}^\infty {\frac{(p-c)^2(\hbox {e}^x)^2-4fp(p-c)}{4f}\cdot \varphi (x)\cdot \hbox {d}x}\ -\ K \\ \end{array} $$
(A2)

where x is normally distributed as \({x\sim N\left({\ln (\theta_0)-\frac{1}{2}\sigma ^2,\sigma^2}\right)}\), N(x) is the cumulative density function and ϕ(x) is the probability density function of x, \(\varphi(x)=\frac{1}{\sigma \sqrt{2\pi}} \cdot \hbox {e}^{-\frac{1}{2\sigma^2}\left[x-(\ln\theta_0-\sigma^2 /2)\right]^2}\)

Derivation of the value function when infrastructure investment is made at Stage 1

Equation (A2) can be extended as follows:

$$ \begin{array}{l} V^{\hbox {INVESTMENT}}(\theta _0,\sigma)=\int_{\ln \theta _1}^\infty {\frac{(p-c)^2(\hbox {e}^x)^2-4fp(p-c)}{4f}\cdot \hbox {d}[N(x)]} -K \\ =\int_{\ln \theta _1}^\infty {\frac{(p-c)^2}{4f}\cdot \hbox {e}^{2x}\cdot \hbox {d}[N(x)]-\int_{\ln \theta _1}^\infty {p(p-c)\cdot \hbox {d}[N(x)]} -K} \\ =\frac{(p-c)^2}{4f}\int_{\ln \theta _1}^\infty {\hbox {e}^{2x}\cdot \hbox {d}[N(x)]} -p(p-c)\int_{\ln \theta _1}^\infty {\hbox {d}[N(x)]} -K \\ \end{array}\quad. $$
(A3)

Substituting \({y=\frac{x-(\ln \theta _0 -\frac{\sigma ^2}{2})}{\sigma}}\) in the integral in the first term in Eq. (A3), we get:

$$ \begin{array}{l} \int_{\ln \theta _1}^\infty {\hbox {e}^{2x}\hbox {d}[N(x)]=\int_{y_1}^\infty {\hbox {e}^{2\sigma y+2(\ln \theta _0 -\sigma^2/2)}\hbox {d}[\Phi (y)]} =\int_{y_1}^\infty {\hbox {e}^{2\sigma y+2(\ln \theta _0 -\sigma^2/2)}\cdot \phi (y)\cdot \hbox {d}y}} \\ =\hbox {e}^{2(\ln \theta _0 -\sigma ^2/2)}\int_{y_1 }^\infty {\hbox {e}^{2\sigma y}\cdot \phi (y)\cdot \hbox {d}y} \\ \end{array}, $$
(A4)

In Eq. (A4), \(y_1 =\frac{\ln \theta _1 -(\ln \theta_0-{\sigma^2}/2)}{\sigma}\), Φ(y) is the cumulative density function and φ(y) is the probability density function of the standard normal distribution. Using the formula for the normal integral [42], we compute the integral in Eq. (A4) as:

$$ \begin{array}{l} \int_{y_1}^\infty {\hbox {e}^{2\sigma y}\cdot \phi (y)\cdot \hbox {d}y} =\hbox {e}^{4\sigma ^2/2}\cdot \Phi (y-2\sigma)\vert _{y_1}^\infty =\hbox {e}^{2\sigma ^2}\cdot \Phi (2\sigma -y_1)\\ =\hbox {e}^{2\sigma ^2}\cdot \Phi \left({\frac{2\ln (\theta _0 /\theta_1)+3\sigma ^2}{2\sigma}}\right) \\ \end{array}. $$
(A5)

Plugging Eq. (A5) into Eq. (A4) gives:

$$ \begin{array}{l} \int_{\ln \theta _1}^\infty {\hbox {e}^{2x}\hbox {d}[N(x)]}\ =\ \hbox {e}^{2(\ln \theta _0 -\sigma ^2/2)}\int_{y_1 }^\infty {\hbox {e}^{2\sigma y}\cdot \phi (y)\cdot \hbox{d}y} \\ =\ \hbox {e}^{2(\ln \theta _0 -\sigma^2/2)}\cdot \hbox {e}^{2\sigma ^2}\cdot \Phi \left({\frac{2\ln ({\theta _0}\mathord{\left/ {\vphantom {{\theta _0} {\theta _1}}} \right. \kern-\nulldelimiterspace} {\theta _1})+3\sigma ^2}{2\sigma}} \right)\ =\ \hbox {e}^{\ln \theta _0^2}\cdot \hbox {e}^{\sigma ^2}\cdot \Phi \left({\frac{\ln ({\theta _0} \mathord{\left/ {\vphantom {{\theta _0} {\theta _1}}} \right. \kern-\nulldelimiterspace} {\theta _1})^2+3\sigma ^2}{2\sigma}} \right) \\ =\theta _0^2 \cdot \hbox {e}^{\sigma ^2}\cdot \Phi \left({\frac{\ln ({\theta _0} \mathord{\left/ {\vphantom {{\theta _0} {\theta _1}}} \right. \kern-\nulldelimiterspace} {\theta _1})^2+3\sigma ^2}{2\sigma}} \right) \\ \end{array}. $$
(A6)

Substituting \({y=\frac{x-(\ln \theta _0 -\frac{\sigma ^2}{2})}{\sigma }}\) in the integral’s second term in Eq. (A3) gives:

$$ \begin{array}{l} \int_{\ln \theta _1}^\infty {\hbox {d}[N(x)]=\int_{y_1}^\infty {\hbox {d}[\Phi (y)]}} =\Phi (-y_1)=\Phi \left({-\frac{\ln \theta _1 -(\ln \theta _0 -\frac{\sigma ^2}{2})}{\sigma}} \right) \\ =\Phi \left({\frac{\ln ({\theta _0} \mathord{\left/ {\vphantom {{\theta _0} {\theta _1}}} \right. \kern-\nulldelimiterspace} {\theta _1 })^2-\sigma ^2}{2\sigma}} \right) \\ \end{array}, $$
(A7)

where \(y_1 =\frac{\ln \theta _1 -(\ln \theta _0 -\sigma ^2/2)}{\sigma}\), and Φ(y) is the standard normal cumulative density function.

Plugging Eqs. (A6) and (A7) into Eq. (A3) yields Eq. (11), as we saw earlier in this article:

$$\begin{array}{l} V^{\hbox {INVESTMENT}}(\theta _0,\sigma)=\frac{(p-c)^2}{4f}\int_{\ln \theta _1 }^\infty {\hbox {e}^{2x}\hbox {d}[N(x)]} -p(p-c)\int_{\ln \theta _1}^\infty {\hbox {d}[N(x)]} -K \\ =\frac{(p-c)^2\cdot \theta _0^2 \cdot \hbox {e}^{\sigma ^2}}{4f}\cdot \Phi \left({\frac{\ln ({\theta _0} \mathord{\left/ {\vphantom {{\theta _0} {\theta _1}}} \right. \kern-\nulldelimiterspace} {\theta _1 })^2+3\sigma ^2}{2\sigma}} \right)-p\cdot (p-c)\cdot \Phi \left( {\frac{\ln ({\theta _0} \mathord{\left/ {\vphantom {{\theta _0} {\theta _1}}} \right. \kern-\nulldelimiterspace} {\theta _1})^2-\sigma ^2}{2\sigma}} \right)-K\\ \end{array} $$

Derivation of the value function when no infrastructure investment made at Stage 1

Following the same procedures, we can derive the value function for the case when no infrastructure investment is made at Stage 1, based on Eqs. (1)–(6). We can obtain the optimal attribute level, \({s^{\hbox {NO INVESTMENT*}}}\), and optimal Stage 2 profits, \({\pi ^{\hbox {NO INVESTMENT*}}}\), both modified with λ:

$$ s^{\hbox {NO INVESTMENT*}}=\frac{p-c}{2\lambda f}\theta $$
(A8)
$$ \pi ^{\hbox {NO INVESTMENT*}}=\frac{(p-c)^2\theta ^2-4\lambda fp(p-c)}{4\lambda f} $$
(A9)

The Stage 2 profit when no IT infrastructure investment was made at Stage 1 is conditioned on whether customer demand for the product or service, θ, goes beyond a base level. The base level demand is different from the base demand when the firm makes an investment at Stage 1. We represent this base level as \({\theta _1^\prime=\sqrt {\frac{4\lambda fp}{p-c}}}\) . The firm’s optimal profit at Stage 2 becomes:

$$ \pi ^{\hbox {NO INVESTMENT}}=\left\{ {\begin{array}{ll} 0;&\theta < \theta _1^\prime\\ \frac{(p-c)^2\theta ^2-4\lambda fp(p-c)}{4\lambda f};&\theta \ge \theta _1^\prime\\ \end{array}}\right. $$
(A10)

In this case, the expected value of IT investment becomes Eq. (12):

$$ \begin{array}{l} V^{\hbox {NO INVESTMENT}}(\theta _0,\sigma)\ =\ \int_{\theta _1^\prime}^\infty {\frac{(p-c)^2\theta ^2-4\lambda fp(p-c)}{4\lambda f}} \hbox {d}[F(\theta)]\\ =\frac{(p-c)^2}{4\lambda f}\int_{\ln \theta _1^\prime}^\infty {\hbox {e}^{2x}\cdot \hbox {d}[N(x)]} -p(p-c)\int_{\ln \theta _1^\prime}^\infty {\hbox {d}[N(x)]}\\ =\frac{(p-c)^2\cdot \theta _0^2 \cdot \hbox {e}^{\sigma ^2}}{4\lambda f}\cdot \Phi \left({\frac{\ln ({\theta _0} \mathord{\left/ {\vphantom {{\theta _0} {\theta _1^\prime}}} \right. \kern-\nulldelimiterspace} {\theta _1^\prime})^2+3\sigma ^2}{2\sigma}} \right)-p\cdot (p-c)\cdot \Phi \left({\frac{\ln ({\theta _0} \mathord{\left/ {\vphantom {{\theta _0} {\theta _1^\prime}}} \right. \kern-\nulldelimiterspace} {\theta _1^\prime})^2-\sigma ^2}{2\sigma}} \right) \\ \end{array} $$

Derivation of the value function in the case of imperfect competition

Similarly, we derive the value functions in the case of imperfect competition. Firm 1’s value function for an infrastructure investment at Stage 1 is shown in an expansion of Eq. (16):

$$ \begin{array}{l} V_1^{\hbox {INVESTMENT}} (\theta _0,\sigma)=\int_{\theta _1}^{\theta _2} {\frac{(p-c)^2\theta ^2-4fp(p-c)}{4f}\hbox {d}[F(\theta)]+\int_{\theta _2}^\infty {\frac{(\lambda -2z)(p-c)^2\theta ^2-4\lambda fp(p-c)}{4\lambda f}}} \hbox {d}[F(\theta)]-K\\ =\frac{(p-c)^2}{4f}\int_{\ln\theta _1}^{\ln\theta _2}{\hbox {e}^{2x}} \hbox {d}[N(x)]+\frac{(\lambda -2z)(p-c)^2}{4\lambda f}\int_{\ln\theta _2}^\infty {\hbox {e}^{2x}\hbox {d}[N(x)]} -p(p-c)\int_{\ln\theta _1}^\infty{\hbox {d}[N(x)]} -K\\ =\frac{(p-c)^2\theta _0^2\cdot \hbox {e}^{\sigma ^2}}{4f}\Phi\left({\frac{\ln ({\theta _0}\mathord{\left/{\vphantom{{\theta _0}{\theta _1}}} \right.\kern-\nulldelimiterspace}{\theta _1})^2+3\sigma ^2}{2\sigma}} \right)-p(p-c)\Phi\left({\frac{\ln ({\theta _0}\mathord{\left/ {\vphantom{{\theta _0}{\theta _1}}}\right.\kern-\nulldelimiterspace} {\theta _1})^2-\sigma ^2}{2\sigma}}\right)\\ -\frac{2z(p-c)^2\theta _0^2\cdot \hbox {e}^{\sigma ^2}}{4\lambda f}\Phi\left({\frac{\ln ({\theta _0}\mathord{\left/{\vphantom{{\theta _0}{\theta _2}}}\right.\kern-\nulldelimiterspace}{\theta _2})^2+3\sigma ^2}{2\sigma}}\right)-K\\ \end{array} $$

Firm 1’s value function with no IT investment at Stage 1 is an expansion of Eq. (17):

$$ \begin{array}{l} V_1^{\hbox {NO INVESTMENT}} (\theta _0,\sigma)=\int_{\theta _3}^\infty {\frac{(1-2z)(p-c)^2\theta ^2-4\lambda fp(p-c)}{4\lambda f}\hbox {d}[F(\theta)]}\\ =\frac{(1-2z)(p-c)^2}{4\lambda f}\int_{\ln\theta _3}^\infty{\hbox {e}^{2x}} \hbox {d}[N(x)]-p(p-c)\int_{\ln\theta _3}^\infty{\hbox {d}[N(x)]}\\ =\frac{(1-2z)(p-c)^2\theta _0^2\cdot \hbox {e}^{\sigma ^2}}{4\lambda f}\Phi\left({\frac{\ln ({\theta _0}\mathord{\left/{\vphantom{{\theta _0}{\theta _3}}}\right.\kern-\nulldelimiterspace}{\theta _3})^2+3\sigma ^2}{2\sigma}}\right)-p(p-c)\Phi\left({\frac{\ln ({\theta _0}\mathord{\left/ {\vphantom{{\theta _0}{\theta _3}}}\right.\kern-\nulldelimiterspace} {\theta _3})^2-\sigma ^2}{2\sigma}}\right)\\ \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, Q., Kauffman, R.J. & March, S.T. Valuing information technology infrastructures: a growth options approach. Inf Technol Manage 8, 1–17 (2007). https://doi.org/10.1007/s10799-006-0006-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10799-006-0006-2

Keywords

Navigation