Skip to main content

Advertisement

Log in

“I want my robot to look for food”: Comparing Kindergartner’s programming comprehension using tangible, graphic, and hybrid user interfaces

  • Published:
International Journal of Technology and Design Education Aims and scope Submit manuscript

Abstract

In recent years, educational robotics has become an increasingly popular research area. However, limited studies have focused on differentiated learning outcomes based on type of programming interface. This study aims to explore how successfully young children master foundational programming concepts based on the robotics user interface (tangible, graphical, hybrid) taught in their curriculum. Thirty-five Kindergarten students participated in a 9-week robotics curriculum using the LEGO WeDo robotics construction kit and the Creative Hybrid Environment for Robotic Programming (CHERP) programming language. A mixed methods data collection approach was employed, including qualitative observational data from the classrooms, as well as quantitative mid- and post-test assessments of students’ programming knowledge using CHERP. The findings show little association between user interface and programming comprehension, although there may be an order-affect when introducing user interfaces. Implications for best practices when introducing programming in early childhood settings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ackermann, E. (1996). Perspective-taking and object construction. In Y. Kafai & M. Resnick (Eds.), Constructionism in practice: Designing, thinking, and learning in a digital world (pp. 107–123). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Africano, D., Berg, S., Lindbergh, K., Lundholm, P., Nilbrink, F., & Persson, A. (2004). Designing tangible interfaces for children’s collaboration. In CHI’04: CHI’04 extended abstracts on Human factors in computing systems (pp. 853–868). New York, NY: ACM.

  • Bers, M. (2008). Blocks to robots: Learning with technology in the early childhood classroom. New York, NY: Teachers College Press.

    Google Scholar 

  • Bers, M. U. (2010). The TangibleK robotics program: Applied computational thinking for young children. Early Childhood Research and Practice, 12(2). http://ecrp.uiuc.edu/v12n2/bers.html.

  • Bers, M. U. (2012). Designing digital experiences for positive youth development: From playpen to playground. Cary, NC: Oxford.

    Book  Google Scholar 

  • Bers, M., & Horn, M. (2010). Tangible programming in early childhood: Revisiting developmental assumptions through new technologies. In I. R. Berson & M. J. Berson (Eds.), High-tech tots: Childhood in a digital world (pp. 49–70). Greenwich, CT: Information Age Publishing.

  • Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative analysis. London: Sage Publications.

    Google Scholar 

  • Cheng, L. K., Der, C. S., Sidhu, M. S., & Omar, R. (2011). GUI versus TUI: Engagement for children with no prior computing experience. Electronic Journal of Computer Science and Information Technology (eJCSIT), 3(1), 31–39.

    Google Scholar 

  • Clements, D. H. & Samara, J. (2009). Effects of a preschool mathematics curriculum: Summative research on the building blocks project. Journal for Research in Mathematics Education, 38(2), 136–163. http://gse.buffalo.edu/fas/clements/files/clements_bb_jrme.pdf.

  • Creswell, J. W. (2014). Research and design: Qualitative, quantitative, and mixed methods approaches (4th ed.). Thousand Oaks, CA: SAGE Publications Inc.

    Google Scholar 

  • Frei, P., Su, V., Mikhak, B., & Ishii, H. (2000). Curlybot: Designing a new class of computational toys. T. Turner & G. Szwillus, Conference Editors. In SIGCHI Conference on Human Factors in Computing Systems, New York, NY: ACM Press.

  • Friedlander, B. Z., Jacobs, A. C., Davis, B. B., & Wetstone, H. S. (1972). Time-sampling analysis of infants’ natural language environments in the home. Child Development, 43(3), 730–740.

    Article  Google Scholar 

  • Froebel, F. (1826). On the Education of Man (Die Menschenerziehung), Keilhau/Leipzig: Wienbrach.

  • Horn, M. S., Crouser, J. R., & Bers, M. U. (2012). Tangible interaction and learning: the case for a hybrid approach. Personal and Ubiquitous Computing, 16(4), 379–389.

    Article  Google Scholar 

  • Kazakoff, E. R., Sullivan, A. A., & Bers, M. U. (2013). The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Childhood Education Journal, 41(4), 245–255.

    Article  Google Scholar 

  • Kim, M. J., & Maher, M. L. (2006). Comparison of designers using a tangible user interface and a graphical user interface and the impact on spatial cognition (Doctoral dissertation). Key Centre of Design Computing and Cognition, University of Sydney, Australia.

  • Kostelnik, M. J., & Grady, M. L. (2009). Getting it right from the start: The principal’s guide to early childhood education. Thousand Oaks, CA: Corwin.

    Google Scholar 

  • Manches, A., & Price, S. (2011). Designing learning representations around physical manipulation: Hands and objects. In 10th international conference on interaction design and children, Ann Arbor, MI, NY: ACM Press.

  • Marshall, P. (2007). Do tangible interfaces enhance learning? In First international conference on tangible and embodied interaction, Baton Rouge, LA.

  • Massachusetts Department of Elementary and Secondary Education (MA DOE) (2011). Massachusetts Curriculum Framework for Mathematics, Grades Pre-Kindergarten to 12. Malden, MA: Massachusetts Department of Elementary and Secondary Education. http://www.doe.mass.edu/frameworks/math/0311.pdf.

  • Montessori, M., & Gutek, G. L. (2004). The Montessori method: The origins of an educational innovation: including an abridged and annotated edition of Maria Montessori’s the Montessori method. Lanham, Md: Rowman & Littlefield Publishers.

    Google Scholar 

  • Moskal, B. M. (2000). Scoring rubrics: What, when and how? Practical Assessment, Research & Evaluation, 7(3). http://PAREonline.net/getvn.asp?v=7&n=3.

  • Piaget, J. (1952). The origins of intelligence in children. New York: International Universities Press.

    Book  Google Scholar 

  • Piaget, J. (1959). The language and thought of the child (3d ed.). New York: Humanities Press.

    Google Scholar 

  • Ploderer, B. (2005). Tangible User Interfaces: Potentials Inherent in Tangible User Interfaces for Simplified Handling of Computer Applications (Master’s thesis). Graz, Austria: University of Applied Sciences FH JOANNEUM.

    Google Scholar 

  • Quarles, J., Lampotang, S., Fischler, I., Fishwick, P., & Lok, B. (2008). Tangible user interfaces compensate for low spatial cognition. In IEEE symposium on 3D user interfaces, Reno, Nevada.

  • Raffle, H. S., Parkes, A. J., & Ishii, H. (2004). Topobo: a constructive assembly system with kinetic memory. In SIGCHI conference on human factors in computing systems. Vienna, Austria: ACM Press.

  • Repp, A. C., Roberts, D. M., Slack, D. J., Repp, C. F., & Berkler, M. S. (1976). A comparison of frequency, interval, and time-sampling methods of data collection. Journal of Applied Behavioral Analysis, 9(4), 501–508.

    Article  Google Scholar 

  • Resnick, M., Martin, F., Berg, R., Borovoy, R., Colella, V., & Kramer, K. et al. (1998). Digital manipulatives: New toys to think with. M. E. Atwood, C. Karat, A. Lund, J. Coutaz, & J. Karat, Conference Editors. In SIGCHI conference on human factors in computing systems, New York: ACM Press.

  • Sehyun, A. (2006). Hybrid user interfaces: design guidelines and implementation examples (Doctoral dissertation). Retrieved from DSpace@MIT. http://hdl.handle.net/1721.1/34382.

  • Strawhacker, A., Sullivan, A., & Bers, M. U. (2013). TUI, GUI, HUI: Is a bimodal interface truly worth the sum of its parts? In Proceedings of the 12th international conference on interaction design and children (IDC '13) (pp. 309–312). New York, NY: ACM Press.

  • Sullivan, A., Kazakoff, E. R., & Bers, M. U. (2013). The wheels on the bot go round and round: Robotics curriculum in pre-Kindergarten. Journal of Information Technology Education: Innovations in Practice, 12, 203–219. http://www.jite.org/documents/Vol12/JITEv12IIPp203-219Sullivan1257.pdf.

  • Suzuki, H., & Kato, H. (1995). Interaction-level support for collaborative learning: AlgoBlock—an open programming language. John L. Schnase and Edward L. Cunnius, Conference Editors. In First international conference on computer support for collaborative learning (CSCL ‘95) L. Erlbaum Associates Inc., Hillsdale, NJ.

  • Tsong, C. K., Chong, T. S., & Sumsudin, Z. (2012). Tangible multimedia: A case study for bringing tangibility into multimedia learning. The Turkish Online Journal of Educational Technology (TOJET), 11(4), 442–450. http://www.tojet.net/articles/v11i4/11445.pdf.

  • Vygotsky, L. (1978). Interaction between learning and development. In M. Gauvain & M. Cole (Eds.), Mind and Society (pp. 79–91). Cambridge, MA: Harvard University Press.

  • Wyeth, P. (2008). How young children learn to program with sensor, action, and logic blocks. Journal of the Learning Sciences, 17(4), 517–550.

    Article  Google Scholar 

  • Xie, L., Antle, A. N., & Motamedi, N. (2008). Are tangibles more fun? Comparing children’s enjoyment and engagement using physical, graphical, and tangible user interfaces. Second International Conference on Tangible and Embedded Interaction. Bonn, Germany, Feb 18–20.

  • Xu, D. (2005) Tangible user interface for children—an overview. In Sixth Conference in the Department of Computing, University of Central Lancashire, Preston, UK.

  • Zuckerman, O., Arida, S., & Resnick, M. (2005). Extending Tangible Interfaces for Education: Digital Montessori-inspired Manipulatives. In ACM CHI 2005 Conference on Human Factors in Computing Systems, Oregon, US.

  • Zuckerman O., & Resnick M. (2003). System blocks: A physical interface for system dynamics learning. In The 21st International System Dynamics Conference.

Download references

Acknowledgments

This research was funded by the National Science Foundation (NSF Grant DRL- 111897). Any opinions, findings, and conclusions or recommendations expressed in this article are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors would like to extend many thanks to the wonderful and creative teachers of the East Boston Early Education Center who welcomed us to teach in their classrooms for this study, and to their principal for embracing a new venture into classroom technology. We also thank the members of the Developmental Technologies Research Group who contributed to this research: Ellen Gage, for assisting in the development of the Solve It assessment; Natasha Link, for assisting with data analysis; and the many Tufts graduate and undergraduate students who assisted in the classrooms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Strawhacker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strawhacker, A., Bers, M.U. “I want my robot to look for food”: Comparing Kindergartner’s programming comprehension using tangible, graphic, and hybrid user interfaces. Int J Technol Des Educ 25, 293–319 (2015). https://doi.org/10.1007/s10798-014-9287-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10798-014-9287-7

Keywords

Navigation