Skip to main content
Log in

Estimation of green bean yield, water deficiency and productivity using spectral indexes during the growing season

  • Published:
Irrigation and Drainage Systems

Abstract

Field experiments were carried out in the 2004 and 2005 growing seasons on drip irrigated dwarf green beans (Phaseolus vulgaris, humilis). Soil water content (SWC), spectral reflectance and yield were monitored. Based on these data crop evapotranspiration (ETc), soil water deficit index (SWDI), water use efficiency (WUE) and four separate spectral indexes were calculated. In order to determine use opportunities of spectral indexes for estimation of yield, SWDI and WUE, some statistical analyzes were made. Results showed that spectral indexes could be used for monitoring of yield, SWDI and WUE. Especially, Soil Adjusted Vegetation Index (SAVI) had the highest correlations with all three of the parameters. The estimation procedure which was given in this study has a potential use either during, or at the end of the growing season. Estimated values of WUE and SWDI were 3.2 (kg m−3) and 0.12, respectively, through SAVI and the given procedure, indicates the optimal water use and yield conditions for dwarf green beans. At this situation, probably ETc was 580 mm and yield was 25.5 t ha−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ETc:

Crop Evapotranspiration

ETp:

Potential Crop Evapotranspiration

LAI:

Leaf Are Index

NDVI:

Normalize Difference Vegetation Index

SAVI:

Soil Adjusted Vegetation Index

SE:

Standard Error

SR:

Simple Ratio

SWC:

Soil water content

SWDI:

Soil Water Deficit Index

TAM:

Total Available Soil Moisture

WI:

Water Index

WUE:

Water Use Efficiency

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration; guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, United Nations, Rome

  • Angus JF, van Herwaarden AF (2001) Increasing water use and water use efficiency in dryland wheat. Agron J 93:290–298

    Google Scholar 

  • Anonymous (1996) Food production: The critical role of water. FAO technical background documents. 6–11. World Food Summit 2:13–17

    Google Scholar 

  • Aparicio N, Viellegas D, Casadesus J, Araus JL, Royo C (2000) Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron J 92:83–91

    Google Scholar 

  • Ayla Ç (1993) Comparison of potential evapotranspiration with actual consumptive use of bean, strawberry, wheat and sugarbeet by weighing lysmeter under Ankara conditions, Vol, 181, Rep. No, 88, Ankara Research Institute of Rural Affairs, Ankara Turkey

  • Bos MG (1980) Irrigation efficiencies at crop production level. ICID Bull 29:18–25

    Google Scholar 

  • Bos MG (1985) Summary of ICID definitions of irrigation efficiency. ICID Bull 34:28–31

    Google Scholar 

  • Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Gregoire JM (2001) Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens Environ 77:22–33, doi:10.1016/S0034-4257(01)00191-2

    Article  Google Scholar 

  • Cohen WB (1991) Temporal versus spatial variation in leaf reflectance under changing water stress conditions. Int J Remote Sens 12:1865–1876, doi:10.1080/01431169108955215

    Article  Google Scholar 

  • Colaizzi PD, Barnes EM, Clarke TR, Choi CY, Waller PM (2003a) Estimating soil moisture under low frequency surface irrigation using crop water stress index. J Irrig Drain Eng 129(1):27–35, doi:10.1061/(ASCE)0733-9437(2003)129:1(27)

    Article  Google Scholar 

  • Colaizzi PD, Barnes EM, Clarke TR, Choi CY, Waller PM (2003b) Water stress detection under high frequency sprinkler irrigation with water deficit index. J Irrig Drain Eng 129(1):36–43, doi:10.1061/(ASCE)0733-9437(2003)129:1(36)

    Article  Google Scholar 

  • Cure WW, Flagler RB, Heagle AS (1989) Correlations between canopy reflectance and leaf temperature in irrigated and droughted soybeans. Remote Sens Environ 29:273–280, doi:10.1016/0034-4257(89)90006-0

    Article  Google Scholar 

  • Danson M, Steven MD, Malthus TJ, Clark JA (1992) High-spectral resolution data for determining leaf water content. Int J Remote Sens 13:461–470, doi:10.1080/01431169208904049

    Article  Google Scholar 

  • Hatfield JL, Sauer TJ, Prueger J (2001) Managing soils to achieve greater water use efficiency: a review. Agron J 93:271–280

    Google Scholar 

  • Howell TA (2001) Enhancing water use efficiency in irrigated agriculture. Agron J 93:281–289

    Google Scholar 

  • Huete AR (1988) A soil adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309, doi:10.1016/0034-4257(88)90106-X

    Article  Google Scholar 

  • Jackson RD (1986) Remote sensing of biotic and abiotic plant stress. Annu Rev Phytopathol 4:289–297

    CAS  Google Scholar 

  • Jackson RD, Pinter PJ Jr, Reginato RJ, Idso SB (1980) Hand-held radiometry. A set of notes developed for use at the workshop on hand-held radiometry. Phoenix, Ariz., February 25–26, 1980

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. Manuels and reports on engineering practices no. 70. ASCE, New York

  • Kang Y, Wang FX, Liu HJ, Yuan BH (2004) Potato evapotranspiration and yield under different drip irrigation regimes. Irrig Sci 23:133–143, doi:10.1007/s00271-004-0101-2

    Article  Google Scholar 

  • Kleman J, Fagerlund E (1987) Influence of different nitrogen and irrigation treatments on the spectral reflectance of barley. Remote Sens Environ 21:1–14, doi:10.1016/0034-4257(87)90002-2

    Article  Google Scholar 

  • Köksal ES (2006) Determination of the Effects of Different Irrigation Levels on Sugar beet Yield, Quality and Physiology Using Infrared Thermometer and Spectroradiometer, University of Ankara, PhD. Thesis, Ankara

  • Köksal ES (2008) Evaluation of spectral vegetation indices as an indicator of crop coefficient and evapotranspiration under full and deficit irrigation conditions. Int J Remote Sens. doi:10.1080/01431160802226000

  • Luquet D, Begue A, Vidal A, Clouvel P, Dauzat J, Olioso A et al (2003) Using multidirectional thermography to characterize water status of cotton. Remote Sens Environ 84:411–421, doi:10.1016/S0034-4257(02)00131-1

    Article  Google Scholar 

  • Moran MS, Pinter P Jr, Clothier BE, Allen SG (1989) Effect of water stress on the canopy architecture and spectral indices of irrigated alfalfa. Remote Sens Environ 29:251–261, doi:10.1016/0034-4257(89)90004-7

    Article  Google Scholar 

  • Oweis T, Zhang H, Pala M (2000) Water use efficiency of rainfed and irrigated bread wheat in a Mediterranean Environment. Agron J 92:231–238, doi:10.1007/s100870050027

    Article  Google Scholar 

  • Pala M, Ryan J, Zhang H, Singh M, Harris HC (2007) Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agric Water Manage 93:136–144, doi:10.1016/j.agwat.2007.07.001

    Article  Google Scholar 

  • Penuelas J, Filella I, Biel C, Serrano L, Save R (1993) The reflectance at the 950–970 nm region as an indicator of plant water status. Int J Remote Sens 14(10):1887–1905, doi:10.1080/01431169308954010

    Article  Google Scholar 

  • Penuelas J, Pinol J, Ogaya R, Fiella I (1997) Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Int J Remote Sens 18(13):2869–2875, doi:10.1080/014311697217396

    Article  Google Scholar 

  • Pinter PJ Jr, Hatfield JL, Schepers JS, Barners EM, Moran MS, Daughtry CST et al (2003) Remote sensing for crop management. Photog Eng Remote Sens 69(6):647–664

    Google Scholar 

  • Pinter PJ Jr (1983) Monitoring the effect of water stress on the growth of alfalfa via remotely sensed observations of canopy reflectance and temperature. 18th Conference on Agriculture and Forest Meteorology, April 26–28, 1983. Boston Pp:91–94

  • Raun WR, Solie JB, Johnson GV, Stone ML, Lukina EV, Thomason WE et al (2001) In-season of potential grain yield in winter wheat using canopy reflectance. Agron J 93:131–138

    Google Scholar 

  • Riggs GA, Running SW (1991) Detection of canopy water stress in conifers using the airborne imaging spectrometer. Remote Sens Environ 35:51–68, doi:10.1016/0034-4257(91)90065-E

    Article  Google Scholar 

  • Saha SK, Gopalan AAKS, Kamat DS (1986) Relation between remotely sensed canopy temperature, crop water stress, air vapour pressure deficit and evapotranspiration in chickpea. Agric For Meteorol 38:17–26, doi:10.1016/0168-1923(86)90047-X

    Article  Google Scholar 

  • Shibayama M, Takahashi W, Morinaga S, Akiyama T (1993) Canopy water deficit detection in paddy rice using a high resolution field spectroradiometer. Remote Sens Environ 45:117–126, doi:10.1016/0034-4257(93)90036-W

    Article  Google Scholar 

  • Sinclair TR, Tanner CB, Bennett JM (1984) Water-use efficiency in crop production. Bioscience 34:36–40, doi:10.2307/1309424

    Article  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, David Ho TH et al (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9, doi:10.1016/S0168-9452(99)00247-2

    Article  PubMed  CAS  Google Scholar 

  • Thomas JR, Namken LN, Oether GF, Brown RG (1971) Estimating leaf water content by reflectance measurements. Agron J 63:845–847

    Google Scholar 

  • Thenkabail PS, Smith RB, Pauw ED (2000) Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ 71:158–182, doi:10.1016/S0034-4257(99)00067-X

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150, doi:10.1016/0034-4257(79)90013-0

    Article  Google Scholar 

  • Ünlü M, Kanber R, Onder S, Sezen M, Diker K, Ozekici B et al (2007) Cotton yields under different furrow irrigation management techniques in the Southeaster Anatolia Project (GAP) area, Turkey. Irrig Sci 26:35–48, doi:10.1007/s00271-007-0070-3

    Article  Google Scholar 

  • Üstün H, Ayla Ç (1993) Consumptive use and phosphorus-irrigation relations of dry beans under Kesikköprü conditions, Vol, 177, Rep. No, 85, Ankara Research Institute of Rural Affairs, Ankara Turkey

  • Üstün H, Aran A, Yıldırım O (1997) Determination of drip irrigated green bean irrigation water requirement under Ankara condition, Vol, 207, Rep. No, 113, Ankara Research Institute of Rural Affairs, Ankara Turkey

Download references

Acknowledgement

This research is funded by the Ankara Soil and Water Resources Research Institute. The author is indebted to the following: İsmail Kabasakal, İbrahim Çolak and Muhterem Özçelik for their help in the field work; and the staff of the Ankara Soil and Water Resources Research Institute for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyüp Selim Köksal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köksal, E.S., Kara, T., Apan, M. et al. Estimation of green bean yield, water deficiency and productivity using spectral indexes during the growing season. Irrig Drainage Syst 22, 209–223 (2008). https://doi.org/10.1007/s10795-008-9052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10795-008-9052-8

Keywords

Navigation