Skip to main content
Log in

Repeatability of corneal pachymetry and epithelial thickness measurements with spectral-domain optical coherence tomography (SD-OCT) and correlation to ocular surface parameters

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess the repeatability of corneal pachymetry and epithelial thickness measurements with spectral-domain optical coherence tomography (SD-OCT) and identify correlations between epithelial thickness and ocular surface parameters.

Methods

Adults who happened to have prolonged computer use were recruited, excluding those with conditions interfering with corneal measurements or tear production. All subjects filled in the ocular surface disease index (OSDI) questionnaire. Three consecutive measurements of central and peripheral corneal and epithelial thickness were performed with SD-OCT (RTVue XR). Schirmer test I and tear film break-up time (TBUT) were performed. Repeatability was evaluated with intraclass correlation coefficient (ICC), coefficient of variation and repeatability limit. Spearman correlation was used for non-parametric variables.

Results

113 eyes of 63 subjects were included in the study. ICC was ≥ 0.989 for all corneal and ≥ 0.944 for all epithelial pachymetry segments. The best repeatability was found centrally and the worst superiorly both for corneal and epithelial measurements. Central epithelial thickness was weakly correlated with Schirmer test I (rho = 0.21), TBUT (rho = 0.02), OSDI symptoms and OSDI score (rho <|0.32|). OSDI symptoms and OSDI score were weakly correlated with Schirmer test I (rho <|0.3|) and TBUT (rho <|0.34|).

Conclusion

RTVue XR measurements of corneal and epithelial thickness are highly repeatable in all segments. The lack of correlation between epithelial thickness and ocular surface parameters could suggest the assessment of epithelial integrity with reliable methods such as SD-OCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Salmon JF (2020) Kanski’s Clinical Ophthalmology A Systematic Approach, Ninth. Elsevier Ltd

  2. Uchino M, Yokoi N, Uchino Y, Dogru M, Kawashima M, Komuro A, Sonomura Y, Kato H, Kinoshita S, Schaumberg DA, Tsubota K (2013) Prevalence of dry eye disease and its risk factors in visual display terminal users: the Osaka study. Am J Ophthalmol 156:759–766. https://doi.org/10.1016/j.ajo.2013.05.040

    Article  PubMed  Google Scholar 

  3. Unlü C, Güney E, Akçay BİS, Akçalı G, Erdoğan G, Bayramlar H (2012) Comparison of ocular-surface disease index questionnaire, tearfilm break-up time, and Schirmer tests for the evaluation of the tearfilm in computer users with and without dry-eye symptomatology. Clin Ophthalmol 6:1303–1306. https://doi.org/10.2147/OPTH.S33588

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li M, Gong L, Chapin WJ, Zhu M (2012) Assessment of vision-related quality of life in dry eye patients. Invest Ophthalmol Vis Sci 53:5722–5727. https://doi.org/10.1167/iovs.11-9094

    Article  PubMed  Google Scholar 

  5. Kanellopoulos AJ, Asimellis G (2014) In vivo 3-dimensional corneal epithelial thickness mapping as an indicator of dry eye: preliminary clinical assessment. Am J Ophthalmol 157:63-68.e2. https://doi.org/10.1016/j.ajo.2013.08.025

    Article  PubMed  Google Scholar 

  6. Erdélyi B, Kraak R, Zhivov A, Guthoff R, Németh J (2007) In vivo confocal laser scanning microscopy of the cornea in dry eye. Graefe’s Arch Clin Exp Ophthalmol Albr = von Graefes Arch fur Klin und Exp Ophthalmol 245:39–44. https://doi.org/10.1007/s00417-006-0375-6

    Article  Google Scholar 

  7. Schallhorn JM, Tang M, Li Y, Louie DJ, Chamberlain W, Huang D (2017) Distinguishing between contact lens warpage and ectasia: Usefulness of optical coherence tomography epithelial thickness mapping. J Cataract Refract Surg 43:60–66. https://doi.org/10.1016/j.jcrs.2016.10.019

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huang J-Y, Pekmezci M, Yaplee S, Lin S (2010) Intra-examiner repeatability and agreement of corneal pachymetry map measurement by time-domain and Fourier-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 248:1647–1656. https://doi.org/10.1007/s00417-010-1360-7

    Article  PubMed  Google Scholar 

  9. Miglior S, Albe E, Guareschi M, Mandelli G, Gomarasca S, Orzalesi N (2004) Intraobserver and interobserver reproducibility in the evaluation of ultrasonic pachymetry measurements of central corneal thickness. Br J Ophthalmol 88:174–177. https://doi.org/10.1136/bjo.2003.023416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Solomon OD (1999) Corneal indentation during ultrasonic pachometry. Cornea 18:214–215. https://doi.org/10.1097/00003226-199903000-00012

    Article  CAS  PubMed  Google Scholar 

  11. Kawana K, Tokunaga T, Miyata K, Okamoto F, Kiuchi T, Oshika T (2004) Comparison of corneal thickness measurements using Orbscan II, non-contact specular microscopy, and ultrasonic pachymetry in eyes after laser in situ keratomileusis. Br J Ophthalmol 88:466–468. https://doi.org/10.1136/bjo.2003.030361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mansoori T, Balakrishna N (2017) Intrasession repeatability of pachymetry measurements with RTVue XR 100 optical coherence tomography in normal cornea. Saudi J Ophthalmol Off J Saudi Ophthalmol Soc 31:65–68. https://doi.org/10.1016/j.sjopt.2017.04.003

    Article  Google Scholar 

  13. Avanti, Optovue. https://www.optovue.com/products/avanti

  14. Handzel DM, Meyer CH, Wegener A (2022) Monitoring of central corneal thickness after phacoemulsification-comparison of statical and rotating Scheimpflug pachymetry, and spectral-domain OCT. Int J Ophthalmol 15:1266–1272. https://doi.org/10.18240/ijo.2022.08.07

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sella R, Zangwill LM, Weinreb RN, Afshari NA (2018) Repeatability and reproducibility of corneal epithelial thickness mapping with spectral domain optical coherence tomography in normal and diseased cornea eyes. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2018.09.008

    Article  PubMed  Google Scholar 

  16. Huang J, Ding X, Savini G, Pan C, Feng Y, Cheng D, Hua Y, Hu X, Wang Q (2013) A Comparison between Scheimpflug imaging and optical coherence tomography in measuring corneal thickness. Ophthalmology 120:1951–1958. https://doi.org/10.1016/j.ophtha.2013.02.022

    Article  PubMed  Google Scholar 

  17. Schiffman RM, Christianson MD, Jacobsen G, Hirsch JD, Reis BL (2000) Reliability and validity of the ocular surface disease index. Arch ophthalmol 118(5):615–621

    Article  CAS  PubMed  Google Scholar 

  18. (2014) RTVue XR 100 Avanti Edition. https://www.crvmedical.it/wp-content/uploads/bsk-pdf-manager/2017/02/b-optovue-XR_cam-ITA.pdf

  19. Karampatakis V, Karamitsos A, Skriapa A, Pastiadis G (2010) Comparison between normal values of 2- and 5-minute Schirmer test without anesthesia. Cornea 29:497–501. https://doi.org/10.1097/ICO.0b013e3181c2964c

    Article  PubMed  Google Scholar 

  20. Serin D, Karsloglu S, Kyan A, Alagöz G (2007) A simple approach to the repeatability of the schirmer test without anesthesia: eyes open or closed? Cornea 26(8):903–906

    Article  PubMed  Google Scholar 

  21. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bland M (2006) How should I calculate a within-subject coefficient of variation? https://www-users.york.ac.uk/~mb55/meas/cv.htm

  23. Bland JM, Altman DG (1996) Statistics notes: measurement error. BMJ 312:1654. https://doi.org/10.1136/bmj.312.7047.1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akoglu H (2018) User’s guide to correlation coefficients. Turkish J Emerg Med 18:91–93. https://doi.org/10.1016/j.tjem.2018.08.001

    Article  Google Scholar 

  25. OpenStax College (2014) Introductory Statistics. https://legacy.cnx.org/content/col11562/1.17/

  26. Khoramnia R, Rabsilber TM, Auffarth GU (2007) Central and peripheral pachymetry measurements according to age using the Pentacam rotating Scheimpflug camera. J Cataract Refract Surg 33:830–836. https://doi.org/10.1016/j.jcrs.2006.12.025

    Article  PubMed  Google Scholar 

  27. Cho P, Cheung SW (2000) Central and peripheral corneal thickness measured with the TOPCON specular microscope SP-2000P. Curr Eye Res 21:799–807. https://doi.org/10.1076/ceyr.21.4.799.5542

    Article  CAS  PubMed  Google Scholar 

  28. Rabsilber TM, Becker KA, Auffarth GU (2005) Reliability of Orbscan II topography measurements in relation to refractive status. J Cataract Refract Surg 31:1607–1613. https://doi.org/10.1016/j.jcrs.2005.01.013

    Article  PubMed  Google Scholar 

  29. Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ (2008) Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg 24:571–581. https://doi.org/10.3928/1081597X-20080601-05

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tao A, Wang J, Chen Q, Shen M, Lu F, Dubovy SR, Shousha MA (2011) Topographic thickness of Bowman’s layer determined by ultra-high resolution spectral domain-optical coherence tomography. Invest Ophthalmol Vis Sci 52:3901–3907. https://doi.org/10.1167/iovs.09-4748

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Tan O, Brass R, Weiss JL, Huang D (2012) Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology 119:2425–2433. https://doi.org/10.1016/j.ophtha.2012.06.023

    Article  PubMed  Google Scholar 

  32. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Kass MA (2002) The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120:714–730. https://doi.org/10.1001/archopht.120.6.714

    Article  PubMed  Google Scholar 

  33. Feizi S, Jafarinasab MR, Karimian F, Hasanpour H, Masudi A (2014) Central and peripheral corneal thickness measurement in normal and keratoconic eyes using three corneal pachymeters. J Ophthalmic Vis Res 9:296–304. https://doi.org/10.4103/2008-322X.143356

    Article  PubMed  PubMed Central  Google Scholar 

  34. Galgauskas S, Juodkaite G, Tutkuvienė J (2014) Age-related changes in central corneal thickness in normal eyes among the adult Lithuanian population. Clin Interv Aging 9:1145–1151. https://doi.org/10.2147/CIA.S61790

    Article  PubMed  PubMed Central  Google Scholar 

  35. (2013) RTVue XR 100 Avanti Edition

  36. Rao HL, Kumar AU, Kumar A, Chary S, Senthil S, Vaddavalli PK, Garudadri CS (2011) Evaluation of central corneal thickness measurement with RTVue spectral domain optical coherence tomography in normal subjects. Cornea 30:121–126. https://doi.org/10.1097/ICO.0b013e3181e16c65

    Article  PubMed  Google Scholar 

  37. Hoffmann EM, Lamparter J, Mirshahi A, Elflein H, Hoehn R, Wolfram C, Lorenz K, Adler M, Wild PS, Schulz A, Mathes B, Blettner M, Pfeiffer N (2013) Distribution of central corneal thickness and its association with ocular parameters in a large central European cohort: the Gutenberg health study. PLoS ONE 8:e66158. https://doi.org/10.1371/journal.pone.0066158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Foster SC (2019) Dry Eye Disease (Keratoconjunctivitis Sicca) Workup. Medscape

  39. Cui X, Hong J, Wang F, Deng SX, Yang Y, Zhu X, Wu D, Zhao Y, Xu J (2014) Assessment of corneal epithelial thickness in dry eye patients. Optom Vis Sci 91:1446–1454. https://doi.org/10.1097/OPX.0000000000000417

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liang Q, Liang H, Liu H, Pan Z, Baudouin C, Labbé A (2016) Ocular surface epithelial thickness evaluation in dry eye patients: clinical correlations. J Ophthalmol 2016:1628469. https://doi.org/10.1155/2016/1628469

    Article  PubMed  PubMed Central  Google Scholar 

  41. Karakus S, Agrawal D, Hindman HB, Henrich C, Ramulu PY, Akpek EK (2018) Effects of prolonged reading on dry eye. Ophthalmology 125:1500–1505. https://doi.org/10.1016/j.ophtha.2018.03.039

    Article  PubMed  Google Scholar 

  42. Schiffman RM, Christianson MD, Jacobsen G, Hirsch JD, Reis BL (2000) Reliability and validity of the ocular surface disease index. Arch Ophthalmol 118:615–621. https://doi.org/10.1001/archopht.118.5.615

    Article  CAS  PubMed  Google Scholar 

  43. Herbaut A, Liang H, Rabut G, Trinh L, Kessal K, Baudouin C, Labbé A (2018) Impact of dry eye disease on vision quality: an optical quality analysis system study. Transl Vis Sci Technol 7:5. https://doi.org/10.1167/tvst.7.4.5

    Article  PubMed  PubMed Central  Google Scholar 

  44. Choi JH, Li Y, Kim SH, Jin R, Kim YH, Choi W, You IC, Yoon KC (2018) The influences of smartphone use on the status of the tear film and ocular surface. PLoS ONE 13:e0206541. https://doi.org/10.1371/journal.pone.0206541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nichols KK, Nichols JJ, Mitchell GL (2004) The lack of association between signs and symptoms in patients with dry eye disease. Cornea 23:762–770. https://doi.org/10.1097/01.ico.0000133997.07144.9e

    Article  PubMed  Google Scholar 

  46. Ozcura F, Aydin S, Helvaci MR (2007) Ocular surface disease index for the diagnosis of dry eye syndrome. Ocul Immunol Inflamm 15:389–393. https://doi.org/10.1080/09273940701486803

    Article  PubMed  Google Scholar 

  47. Kyei S, Dzasimatu SK, Asiedu K, Ayerakwah PA (2018) Association between dry eye symptoms and signs. J Curr Ophthalmol 30:321–325. https://doi.org/10.1016/j.joco.2018.05.002

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by VC, AT, AD and EO. The first draft of the manuscript was written by VC and all authors commented on previous versions of the manuscript and revised it critically. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vasileia Chatzistergiou.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Institutional Review Board of Papageorgiou General Hospital.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzistergiou, V., Tzamalis, A., Diafas, A. et al. Repeatability of corneal pachymetry and epithelial thickness measurements with spectral-domain optical coherence tomography (SD-OCT) and correlation to ocular surface parameters. Int Ophthalmol 43, 3139–3148 (2023). https://doi.org/10.1007/s10792-023-02713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-023-02713-2

Keywords

Navigation