Skip to main content

Advertisement

Log in

Adverse events after riboflavin/UV-A corneal cross-linking: a literature review

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Riboflavin/UV-A corneal cross-linking (CXL) for treating keratoconus and iatrogenic corneal ectasia has been well-established as first treatment option to stabilize corneal tissue biomechanical instability. Although the plethora of clinical studies has been published into the field, there is no systematic review assessing the type and frequency of adverse events after CXL.

Methods

A systemic literature review on clinical safety and adverse events after CXL in patients with keratoconus and corneal ectasia was performed using PubMed. A literature search was performed for relevant peer-reviewed publications. The main outcome measures extracted from the articles were adverse events, endothelial cell density, corrected distance visual acuity and maximum simulated keratometry.

Results

The most frequent adverse events after CXL were corneal haze and corneal edema, which were mild and transient. The severe adverse events were infrequent (cumulative incidence: < 1.3%) after CXL. The clinical benefits of CXL highly outweighed the risks for the treatment of keratoconus and corneal ectasia.

Conclusions

The severe adverse events with permanent sequelae are infrequent after CXL and all are associated with corneal de-epithelialization, such as infectious keratitis and corneal scarring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gordon-Shaag A, Millodot M, Shneor E, et al. (2015) The Genetic and Environmental Factors for Keratoconus. Biomed Res Int; 2015: 795738.

  2. Cheung I, McGhee C, Sherwin T (2013) A new perspective on the pathobiology of keratoconus: interplay of stromal wound healing and reactive species-associated processes. Clin Exp Optom 96:188–196

    Article  PubMed  Google Scholar 

  3. Bykhovskaya Y, Margines B, Rabinowitz YS. (2016) Genetics in Keratoconus: where Are We? Eye Vis ; 27;3:16.

  4. McGhee CNJ (2013) Keratoconus: the arc of past, present and future. Clin Exp Optom 96:137–139

    Article  PubMed  Google Scholar 

  5. Kenney MC, Brown DJ (2003) The cascade hypothesis of keratoconus. Cont Lens Anterior Eye 26:139–146

    Article  Google Scholar 

  6. McMonnies CW (2014) Epigenetic mechanisms might help explain environmental contributions to the pathogenesis of keratoconus. Eye Contact Lens 40(6):371–375

    Article  PubMed  Google Scholar 

  7. Gomes JAP, Donald T, Christopher JR et al (2015) Global consensus on keratoconus and ectatic diseases. Cornea 34(4):359–369

    Article  PubMed  Google Scholar 

  8. Ferdi AC, Vuong N, Daniel MG et al (2019) Keratoconus natural progression: a systematic review and meta-analysis of 11 529 eyes. Ophthalmology 126(7):935–945

    Article  PubMed  Google Scholar 

  9. Choi JC, Kim MS (2012) Progression of keratoconus by longitudinal assessment with corneal topography. Invest Ophthalmol Vis Sci 53(2):927–935

    Article  PubMed  Google Scholar 

  10. Parker JS, Van Dijk K, Melles GRJ (2015) Treatment options for advanced keratoconus: a review. Surv Ophthalmol 60(5):459–480

    Article  PubMed  Google Scholar 

  11. Henein C, Nanavaty MA (2017) Systematic review comparing penetrating keratoplasty and deep anterior lamellar keratoplasty for management of keratoconus. Cont Lens Anterior Eye 40(1):3–14

    Article  PubMed  Google Scholar 

  12. Epstein AJ, De Castro TN, Laibson PR et al (2006) Risk factors for the first episode of corneal graft rejection in keratoconus. Cornea 25(9):1005–1011

    Article  PubMed  Google Scholar 

  13. Kelly T-L, Williams KA, Coster DJ (2011) Australian corneal graft registry. Corneal transplantation for keratoconus. A registry study. Arch Ophthalmol 129(6):691–697

    Article  PubMed  Google Scholar 

  14. Rahimzadeh M, Hajizadeh E, Feizi S (2010) Cure rate following rejection in bilateral corneal grafts for keratoconus. J Ophthalmic Vis Res 5(3):145–150

    PubMed  PubMed Central  Google Scholar 

  15. Sklar JC, Wendel C, Zhang A et al (2019) Did collagen cross-linking reduce the requirement for corneal transplantation in keratoconus? Can Exp Cornea Nov 38(11):1390–1394

    Article  Google Scholar 

  16. Sandvik GF, Thorsrud A, Råen M et al (2015) Does corneal collagen cross-linking reduce the need for keratoplasties in patients with keratoconus? Cornea 34(9):991–995

    Article  PubMed  Google Scholar 

  17. Godefrooij DA, Gans R, Imhof SM et al (2016) Nationwide reduction in the number of corneal transplantations for keratoconus following the implementation of cross-linking. Acta Ophthalmol 94(7):675–678

    Article  PubMed  Google Scholar 

  18. Rebenitsch RL, Kymes SM, Walline JJ et al (2011) The lifetime economic burden of keratoconus: a decision analysis using a Markov model. Am J Ophthalmol 151(5):768-773.e2

    Article  PubMed  PubMed Central  Google Scholar 

  19. Leung VC, Pechlivanoglou P, Chew HF et al (2017) Corneal collagen cross-linking in the management of keratoconus in canada: a cost-effectiveness analysis. Ophthalmology 124(8):1108–1119

    Article  PubMed  Google Scholar 

  20. Godefrooij DA, Mangen M-JJ, Chan E et al (2017) Cost-effectiveness analysis of corneal collagen crosslinking for progressive keratoconus. Ophthalmology 124(10):1485–1495

    Article  PubMed  Google Scholar 

  21. Lombardo M, Pucci G, Barberi R et al (2015) Interaction of ultraviolet light with the cornea: clinical implications for corneal crosslinking. J Cataract Refract Surg 41(2):446–459

    Article  PubMed  Google Scholar 

  22. Beshtawi IM, O’Donnell C, Radhakrishnan H (2013) Biomechanical properties of corneal tissue after ultraviolet-A-riboflavin crosslinking. J Cataract Refract Surg 39(3):451–462

    Article  PubMed  Google Scholar 

  23. Raiskup F, Spoerl E (2013) Corneal crosslinking with riboflavin and ultraviolet a. I Principles Ocul Surf 11(2):65–74

    Article  PubMed  Google Scholar 

  24. Li J Ji P, Lin X. (2015) Efficacy of corneal collagen cross-linking for treatment of keratoconus a meta-analysis of randomized controlled trials. PLoS One 10(5): e0127079.

  25. Chunyu T, Xiujun P, Zhengjun F et al (2014) Corneal collagen cross-linking in keratoconus: a systematic review and meta-analysis. Sci Rep 4:5652

    Article  PubMed  PubMed Central  Google Scholar 

  26. Koller T, Mrochen M, Seiler T (2009) Complication and failure rates after corneal crosslinking. J Cataract Refract Surg 35:1358–1362

    Article  PubMed  Google Scholar 

  27. Wittig-Silva C, Chan E, Islam FMA et al (2014) A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus. Three-year results. Ophthalmology 121:812–821

    Article  PubMed  Google Scholar 

  28. Lombardo M, Serrao S, Lombardo G et al (2019) Two years outcomes of a randomized controlled trial of transepithelial corneal cross-linking with iontophoresis for keratoconus. J Cataract Refract Surg 45(7):992–1000

    Article  PubMed  Google Scholar 

  29. Dhawan S, Rao K, Natrajan S. (2011) Complications of Corneal Collagen Cross-Linking. J Ophthalmol; 2011: 869015.

  30. Spoerl E, Hoyer A, Pillunat LE et al (2011) Corneal cross-linking and safety issues. Open Ophthalmolo J 5:14–16

    Article  Google Scholar 

  31. Shalchi Z, Wang X, Nanavaty MA (2015) Safety and efficacy of epithelium removal and transepithelial corneal collagen crosslinking for keratoconus. Eye 29:15–29

    Article  CAS  PubMed  Google Scholar 

  32. Lombardo M, Serrao S, Raffa P, et al. (2016) Novel technique of transepithelial corneal cross-linking using iontophoresis in progressive keratoconus. J Ophthalmol; 7472542.

  33. Randleman JB, Santhiago MR, Kymionis GD et al (2017) Corneal cross-linking (CXL): standardizing terminology and protocol nomenclature. J Refract Surg 33(11):727–729

    Article  PubMed  Google Scholar 

  34. Lombardo M, Serrao S (2018) Corneal cross-linking standardized terminology. J Refract Surg 34(3):213

    Article  PubMed  Google Scholar 

  35. Hashemian H, Jabbarvand M, Khodaparast M et al (2014) Evaluation of corneal changes after conventional versus accelerated corneal cross-linking: a randomized controlled trial. J Refract Surg 30(12):837–842

    Article  PubMed  Google Scholar 

  36. Hersh PS, Stulting RD, Muller D et al (2017) U. S. Crosslinking study group U. S. multicenter clinical trial of corneal collagen crosslinking for treatment of corneal ectasia after refractive surgery. Ophthalmology 124(10):1475–1484

    Article  PubMed  Google Scholar 

  37. O’Brart DP, Patel P, Lascaratos G et al (2015) Corneal cross-linking to halt the progression of keratoconus and corneal ectasia: seven-year follow-up. Am J Ophthalmol 160(6):1154–1163

    Article  PubMed  Google Scholar 

  38. Soeters N, van der Valk R, Tahzib NG (2014) Corneal cross-linking for treatment of progressive keratoconus in various age groups. J Refract Surg 30(7):454–460

    Article  PubMed  Google Scholar 

  39. Wisse RP, Gadiot S, Soeters N et al (2016) Higher-order aberrations 1 year after corneal collagen crosslinking for keratoconus and their independent effect on visual acuity. J Cataract Refract Surg 42(7):1046–1052

    Article  PubMed  Google Scholar 

  40. Hersh PS, Stulting RD, Muller D et al (2017) United states crosslinking study group united states multicenter clinical trial of corneal collagen crosslinking for keratoconus treatment. Ophthalmology 124(9):1259–1270

    Article  PubMed  Google Scholar 

  41. Greenstein SA, Hersh PS (2013) Characteristics influencing outcomes of corneal collagen crosslinking for keratoconus and ectasia: implications for patient selection. J Cataract Refract Surg 39(8):1133–1140

    Article  PubMed  Google Scholar 

  42. Cassagne M, Pierné K, Galiacy SD et al (2017) Customized topography-guided corneal collagen cross-linking for keratoconus. J Refract Surg 33(5):290–297

    Article  PubMed  Google Scholar 

  43. Soeters N, Tahzib NG (2015) Standard and hypoosmolar corneal cross-linking in various pachymetry groups. Optom Vis Sci 92(3):329–336

    Article  PubMed  Google Scholar 

  44. Craig JA, Mahon J, Yellowlees A et al (2014) Epithelium-off photochemical corneal collagen cross-linkage using riboflavin and ultraviolet a for keratoconus and keratectasia: a systematic review and meta-analysis. Ocul Surf 12(3):202–214

    Article  PubMed  Google Scholar 

  45. Wen D, Li Q, Song B et al (2018) Comparison of standard versus accelerated corneal collagen cross-linking for keratoconus: a meta-analysis. Invest Ophthalmol Vis Sci 59(10):3920–3931

    Article  CAS  PubMed  Google Scholar 

  46. Shajari M, Kolb CM, Agha B et al (2019) Comparison of standard and accelerated corneal cross-linking for the treatment of keratoconus: a meta-analysis. Acta Ophthalmol 97(1):e22–e35

    Article  PubMed  Google Scholar 

  47. Kobashi H, Tsubota K (2020) Accelerated versus standard corneal cross-linking for progressive keratoconus: a meta-analysis of randomized controlled trials. Cornea 39(2):172–180

    Article  PubMed  Google Scholar 

  48. Bikbova G, Bikbov M (2014) Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmol 92(1):e30–e34

    Article  CAS  PubMed  Google Scholar 

  49. Chen S, Chan TC, Zhang J et al (2016) Epithelium-on corneal collagen crosslinking for management of advanced keratoconus. J Cataract Refract Surg 42(5):738–749

    Article  PubMed  Google Scholar 

  50. Hersh PS, Lai MJ, Gelles JD et al (2018) Transepithelial corneal crosslinking for keratoconus. J Cataract Refract Surg 44(3):313–322

    Article  PubMed  Google Scholar 

  51. Soeters N, Wisse RP, Godefrooij DA et al (2015) Transepithelial versus epithelium-off corneal cross-linking for the treatment of progressive keratoconus: a randomized controlled trial. Am J Ophthalmol 159(5):821–8.e3

    Article  PubMed  Google Scholar 

  52. Vinciguerra P, Romano V, Rosetta P et al (2016) Transepithelial iontophoresis versus standard corneal collagen cross-linking: 1-year results of a prospective clinical study. J Refract Surg 32(10):672–678

    Article  PubMed  Google Scholar 

  53. Wen D, Song B, Li Q et al (2018) Comparison of epithelium-off versus transepithelial corneal collagen cross-linking for keratoconus: a systematic review and meta-analysis. Cornea 37(8):1018–1024

    Article  PubMed  Google Scholar 

  54. Godefrooij DA, Roohé SL, Soeters N et al (2020) The independent effect of various cross-linking treatment modalities on treatment effectiveness in keratoconus. Cornea 39(1):63–70

    Article  PubMed  Google Scholar 

  55. Zhang X, Zhao J, Li M, et al. (2018) Conventional and transepithelial corneal cross-linking for patients with keratoconus. PLoS One;13(4):e0195105.

  56. Eissa SA, Badr Eldin N, Nossair AA et al (2017) Primary outcomes of accelerated epithelium-off corneal cross-linking in progressive keratoconus in children: a 1-year prospective study. J Ophthalmol 2017:1923161

    Article  PubMed  PubMed Central  Google Scholar 

  57. McAnena L, Doyle F, O’Keefe M (2017) Cross-linking in children with keratoconus: a systematic review and meta-analysis. Acta Ophthalmol 95(3):229–239

    Article  PubMed  Google Scholar 

  58. Angunawela RI, Arnalich-Montiel F, Allan BD (2009) Peripheral sterile corneal infiltrates and melting after collagen crosslinking for keratoconus. J Cataract Refract Surg 35(3):606–607

    Article  PubMed  Google Scholar 

  59. Meiri Z, Keren S, Rosenblatt A et al (2016) Efficacy of corneal collagen cross-linking for the treatment of keratoconus a systematic review and meta-analysis. Cornea Mar 35(3):417–28

    Article  Google Scholar 

  60. Raiskup F, Theuring A, Pillunat LE et al (2015) Corneal collagen crosslinking with riboflavin and ultraviolet-a light in progressive keratoconus: ten-year results. Cataract Refract Surg 41:41–46

    Article  Google Scholar 

  61. Doors M, Tahzib NG, Eggink FA et al (2009) Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking. Am J Ophthalmol 148:844–851

    Article  PubMed  Google Scholar 

  62. Yam JC, Chan CW, Cheng AC (2012) Corneal collagen cross-linking demarcation line depth assessed by Visante OCT after CXL for keratoconus and corneal ectasia. J Refract Surg 28:475–481

    Article  PubMed  Google Scholar 

  63. Blackburn BJ, Gu S, Ford MR et al (2019) Noninvasive assessment of corneal crosslinking with phase-decorrelation optical coherence tomography. Invest Ophthalmol Vis Sci 60(1):41–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chai D, Gaster RN, Roizenblatt R et al (2011) Quantitative assessment of uva-riboflavin corneal cross-linking using nonlinear optical microscopy. Invest Ophthalmol Vis Sci 52(7):4231–4238

    Article  PubMed  PubMed Central  Google Scholar 

  65. Krüger A, Hovakimyan M, Ojeda DFR et al (2011) Combined nonlinear and femtosecond confocal laser-scanning microscopy of rabbit corneas after photochemical cross-linking. Invest Ophthalmol Vis Sci 52(7):4247–4255

    Article  PubMed  Google Scholar 

  66. Lombardo M, Merino D, Loza-Alvarez P, et al. (2015) Translational label-free nonlinear imaging biomarkers to classify the human corneal microstructure. Biomed Opt Express 8;6(8):2803–2818

  67. Spadea L, Tonti E, Vingolo EM (2016) Corneal stromal demarcation line after collagen cross-linking in corneal ectatic diseases: a review of the literature. Clin Ophthalmol 10:1803–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schear M, Ragam A, Seedor J, et al (2020) Rapid keratitis and perforation after corneal collagen cross-linking. Am J Ophthalmol Case Rep 18:100658

  69. Faschinger C, Kleinert R, Wedrich A (2010) Corneal melting in both eyes after simultaneous corneal cross-linking in a patient with keratoconus and down syndrome. Ophthalmologe 107(10):951–952

    Article  CAS  PubMed  Google Scholar 

  70. Bagga B, Pahuja S, Murthy S et al (2012) Endothelial failure after collagen cross-linking with riboflavin and UV-A: case report with literature review. Cornea 31(10):1197–1200

    Article  PubMed  Google Scholar 

  71. Gumus K (2014) Acute idiopathic endotheliitis early after corneal cross-linking with riboflavin and ultraviolet-a. Cornea 33(6):630–633

    Article  PubMed  Google Scholar 

  72. Faramarzi A, Hassanpour K, Roshandel D et al (2019) Recurrent peripheral stromal keratitis following corneal collagen cross-linking: a case report. J Ophthalmic Vis Res 14(2):211–214

    Article  PubMed  PubMed Central  Google Scholar 

  73. Prabhakar GV, Panickar N, Reddy JK et al (2020) Severe focal stromal degeneration up to Descemet membrane after corneal collagen cross-linking. Indian J Ophthalmol 68(1):224–226

    Article  CAS  PubMed  Google Scholar 

  74. Randleman JB, Khandelwal SS, Hafezi F. (2015) Corneal Cross-Linking. Surv Ophthalmol 60(6):509–523

  75. Wollensak G, Aurich H, Wirbelauer C et al (2010) Significance of the riboflavin film in corneal collagen crosslinking. J Cataract Refract Surg 36:114–120

    Article  PubMed  Google Scholar 

  76. Lombardo M, Micali N, Villari V et al (2016) All-optical method to assess stromal concentration of riboflavin in conventional and accelerated UV-A irradiation of the human cornea. Invest Opthalmol Vis Sci 57(2):476–483

    Article  CAS  Google Scholar 

  77. Lombardo G, Villari V, Micali N, et al. (2018) Non-invasive optical method for real-time assessment of intracorneal riboflavin concentration and efficacy of corneal cross-linking. J Biophotonics;11(7):e201800028.

  78. Lombardo G, Serrao S, Lombardo M (2020) Comparison between standard and transepithelial corneal cross-linking using a theranostic UV-A device. Graefe’s Arch Clin Exp Ophthalmol 258(4):829–834

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None

Funding

None

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission made substantial contributions to the design of the work and to the acquisition, analysis and interpretation of data. Giuseppe Lombardo and Marco Lombardo have drafted the manuscript. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Sebastiano Serrao.

Ethics declarations

Conflict of interest

None for any author.

Availability of data

Entirely included in the manuscript.

Ethical approval

Not required since the study was not performed on patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrao, S., Lombardo, G. & Lombardo, M. Adverse events after riboflavin/UV-A corneal cross-linking: a literature review. Int Ophthalmol 42, 337–348 (2022). https://doi.org/10.1007/s10792-021-02019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-02019-1

Keywords

Navigation