Skip to main content

Advertisement

Log in

Keratometry with five different techniques: a study of device repeatability and inter-device agreement

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine and compare the repeatability of keratometry measurements with the Javal manual keratometer, Topcon automated kerato-refractometer, IOLMaster, EyeSys Corneal Analysis System, and Pentacam Scheimpflug Topography System, and determine the agreement of measurements of the latter four devices with the Javal keratometer as the gold standard. In this cross-sectional study, 21 people with no history of ocular disease or surgery were examined twice with each device. Minimum, maximum, and average keratometry readings were recorded in diopters (D) for each eye and used in the analyses. For statistical analysis, we determined correlation coefficients and used the Bland–Altman method and calculated the 95 % limits of agreement (LoA). All repeatability coefficients were satisfactorily high. Best repeatability for minimum keratometry and maximum keratometry readings was seen with IOLMaster (95 % LoA −0.23 to 0.19 D and −0.31 to 0.32 D, respectively). Agreement with Javal manual keratometry was best with Topcon and IOLMaster for minimum keratometry readings (95 % LoA −0.67 to 0.28 D and −0.57 to 0.38 D, respectively), and with Topcon for maximum keratometry readings (95 % LoA −0.85 to 0.63 D). In our series of normal eyes, keratometry readings with Topcon, IOLMaster, and Pentacam showed very good agreement with Javal measurements, and inter-device agreements were better than the repeatability of the manual gold standard. However, differences between Javal and EyeSys may not be clinically acceptable, and these two devices should not be used interchangeably. Further studies are needed to investigate these issues in non-virgin eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sahin A, Yildirim N, Basmak H (2008) Two-year interval changes in Orbscan II topography in eyes with keratoconus. J Cataract Refract Surg 34:1295–1299

    Article  PubMed  Google Scholar 

  2. Kohnen T, Koch DD (2009) Cataract and refractive surgery: Progress III. Springer, Heidelberg

    Book  Google Scholar 

  3. Haigis W (2008) Intraocular lens calculation after refractive surgery for myopia: Haigis-L formula. J Cataract Refract Surg 34:1658–1663

    Article  PubMed  Google Scholar 

  4. Aristodemou P, Knox Cartwright NE, Sparrow JM, Johnston RL (2011) Formula choice: Hoffer Q, Holladay 1, or SRK/T and refractive outcomes in 8,108 eyes after cataract surgery with biometry by partial coherence interferometry. J Cataract Refract Surg 37:63–71

    Article  PubMed  Google Scholar 

  5. Hosny M, Alio JL, Claramonte P, Attia WH, Perez-Santonja JJ (2000) Relationship between anterior chamber depth, refractive state, corneal diameter, and axial length. J Refract Surg 16:336–340

    CAS  PubMed  Google Scholar 

  6. Holzer MP, Mamusa M, Auffarth GU (2009) Accuracy of a new partial coherence interferometry analyser for biometric measurements. Br J Ophthalmol 93:807–810

    Article  CAS  PubMed  Google Scholar 

  7. Tennen DG, Keates RH, Montoya C (1995) Comparison of three keratometry instruments. J Cataract Refract Surg 21:407–408

    Article  CAS  PubMed  Google Scholar 

  8. Tsilimbaris MK, Vlachonikolis IG, Siganos D, Makridakis G, Pallikaris IG (1991) Comparison of keratometric readings as obtained by Javal Ophthalmometer and Corneal Analysis System (EyeSys). Refract Corneal Surg 7:368–373

    CAS  PubMed  Google Scholar 

  9. Santodomingo-Rubido J, Mallen EA, Gilmartin B, Wolffsohn JS (2002) A new non-contact optical device for ocular biometry. Br J Ophthalmol 86:458–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Mihaltz K, Kovacs I, Takacs A, Nagy ZZ (2009) Evaluation of keratometric, pachymetric, and elevation parameters of keratoconic corneas with pentacam. Cornea 28:976–980

    Article  PubMed  Google Scholar 

  11. Hashemi H, Mehravaran S, Rezvan F (2010) Changes in corneal thickness, curvature, and anterior chamber depth during the menstrual cycle. Can J Ophthalmol 45:67–70

    Article  PubMed  Google Scholar 

  12. Muller R, Buttner P (1994) A critical discussion of intraclass correlation coefficients. Stat Med 13:2465–2476

    Article  CAS  PubMed  Google Scholar 

  13. Kramer MS, Feinstein AR (1981) Clinical biostatistics. LIV. The biostatistics of concordance. Clin Pharmacol Ther 29:111–123

    Article  CAS  PubMed  Google Scholar 

  14. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  15. Khurana AK (2008) Theory and practice of optics and refraction. Elsevier India, Chennai

    Google Scholar 

  16. Fowler CW (1989) Assessment of toroidal surfaces by the measurement of curvature in three fixed meridians. Ophthalmic Physiol Opt 9:79–80

    Article  PubMed  Google Scholar 

  17. Roy H, Hill WE (2012) IOLMaster for determining the IOL power at the time of surgery. In: Agarwal A, Jacob S (eds) Phacoemulsification. Jaypee Brothers Medical Publications, New Delhi, p 62

    Google Scholar 

  18. http://www.meditec.zeiss.com/C125679E00525939/EmbedTitelIntern/TrainingIOLMforallversions/$File/IOLMaster_Training_Slides.pdf

  19. Koch DD, Foulks GN, Moran CT, Wakil JS (1989) The Corneal EyeSys System: accuracy analysis and reproducibility of first-generation prototype. Refract Corneal Surg 5:424–429

    CAS  PubMed  Google Scholar 

  20. Dave T, Ruston D, Fowler C (1998) Evaluation of the EyeSys model II computerized videokeratoscope. Part II: the repeatability and accuracy in measuring convex aspheric surfaces. Optom Vis Sci 75:656–662

    Article  CAS  PubMed  Google Scholar 

  21. Swart TC (2010) Pentacam. In: Agarwal A, Agarwal A, Jacob S (eds) Dr Agarwal’s textbook on corneal topography: including Pentacam and anterior segment OCT. Jaypee Highlights Medical Publishers, New Delhi, pp 117–136

    Google Scholar 

  22. Sunderraj P (1992) Clinical comparison of automated and manual keratometry in pre-operative ocular biometry. Eye (Lond) 6:60–62

    Article  Google Scholar 

  23. Kim EC, Cho K, Hwang HS, Hwang KY, Kim MS (2013) Intraocular lens prediction accuracy after corneal refractive surgery using K values from 3 devices. J Cataract Refract Surg 39:1640–1646

    Article  PubMed  Google Scholar 

  24. Thebpatiphat N, Hammersmith KM, Rapuano CJ, Ayres BD, Cohen EJ (2007) Cataract surgery in keratoconus. Eye Contact Lens 33:244–246

    Article  PubMed  Google Scholar 

  25. Shirayama M, Wang L, Weikert MP, Koch DD (2009) Comparison of corneal powers obtained from 4 different devices. Am J Ophthalmol 148(528–35):e1

    PubMed  Google Scholar 

  26. Pardhan S, Douthwaite WA (1998) Comparison of videokeratoscope and autokeratometer measurements on ellipsoid surfaces and human corneas. J Refract Surg 14:414–419

    Google Scholar 

  27. Kawamorita T, Nakayama N, Uozato H (2009) Repeatability and reproducibility of corneal curvature measurements using the Pentacam and Keratron topography systems. J Refract Surg 25:539–544

    Article  PubMed  Google Scholar 

  28. McEwan JR, Massengill RK, Friedel SO (1990) The effect of keratometer and axial length measurements on primary implant power calculations. J Cataract Refract Surg 16:61–70

    Article  CAS  PubMed  Google Scholar 

  29. Olsen T (2007) Calculation of intraocular lens power: a review. Acta Ophthalmol Scand 85:472–485

    Article  PubMed  Google Scholar 

  30. Giraldez MJ, Yebra-Pimentel E, Parafita MA, Escandon S, Cervino A, Perez MV (2000) Comparison of Keratometric Values of Healthy Eyes Measured by Javal Keratometer, Nidek Autokeratometer, and Corneal Analysis System (EyeSys). Int Contact Lens Clin 27:33–40

    Article  Google Scholar 

  31. Davies LN, Mallen EA, Wolffsohn JS, Gilmartin B (2003) Clinical evaluation of the Shin-Nippon NVision-K 5001/Grand Seiko WR-5100 K autorefractor. Optom Vis Sci 80:320–324

    Article  PubMed  Google Scholar 

  32. Sheppard AL, Davies LN (2010) Clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM-5500. Ophthalmic Physiol Opt 30:143–151

    Article  PubMed  Google Scholar 

  33. Nemeth J, Fekete O, Pesztenlehrer N (2003) Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation. J Cataract Refract Surg 29:85–88

    Article  PubMed  Google Scholar 

  34. McAlinden C, Khadka J, Pesudovs K (2011) A comprehensive evaluation of the precision (repeatability and reproducibility) of the Oculus Pentacam HR. Invest Ophthalmol Vis Sci 52:7731–7737

    Article  PubMed  Google Scholar 

  35. Chang M, Kang S, Kim HM (2012) Which Keratometer is Most Reliable for Correcting Astigmatism with Toric Intraocular Lenses? Korean J Ophthalmol 26:10–14

    Article  PubMed Central  PubMed  Google Scholar 

  36. Whang WJ, Byun YS, Joo CK (2012) Comparison of refractive outcomes using five devices for the assessment of preoperative corneal power. Clin Experiment Ophthalmol 40:425–432

    Article  PubMed  Google Scholar 

  37. Holladay JT, Hill WE, Steinmueller A (2009) Corneal power measurements using scheimpflug imaging in eyes with prior corneal refractive surgery. J Refract Surg 25:862–868

    Article  PubMed  Google Scholar 

  38. Varssano D, Rapuano CJ, Luchs JI (1997) Comparison of keratometric values of healthy and diseased eyes measured by Javal keratometer, EyeSys, and PAR. J Cataract Refract Surg 23:419–422

    Article  CAS  PubMed  Google Scholar 

  39. Moura RC, Bowyer BL, Stevens SX, Rowsey JJ (1998) Comparison of three computerized videokeratoscopy systems with keratometry. Cornea 17:522–528

    Article  CAS  PubMed  Google Scholar 

  40. Read SA, Collins MJ, Iskander DR, Davis BA (2009) Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes. J Cataract Refract Surg 35:1072–1081

    Article  PubMed  Google Scholar 

  41. Elbaz U, Barkana Y, Gerber Y, Avni I, Zadok D (2007) Comparison of different techniques of anterior chamber depth and keratometric measurements. Am J Ophthalmol 143:48–53

    Google Scholar 

  42. Huynh SC, Mai TQ, Kifley A, Wang JJ, Rose KA, Mitchell P (2006) An evaluation of keratometry in 6-year-old children. Cornea 25:383–387

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

No conflicting relationship exists for any author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hashemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehravaran, S., Asgari, S., Bigdeli, S. et al. Keratometry with five different techniques: a study of device repeatability and inter-device agreement. Int Ophthalmol 34, 869–875 (2014). https://doi.org/10.1007/s10792-013-9895-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-013-9895-3

Keywords

Navigation