Skip to main content

Advertisement

Log in

Choroidal neovascularization following laser in situ keratomileusis for high myopia: a case series

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

To report three patients who developed unilateral choroidal neovascularization (CNV) following laser in situ keratomileusis (LASIK) for high myopia. Retrospective chart reviews of three highly myopic patients who developed CNV following LASIK and who attended a tertiary care private practice were conducted. The clinical presentation of the patients was analyzed. All patients were treated with a combination of intravitreal ranibizumab and photodynamic therapy with verteporfin. Main outcome measures were clinical fundus appearance and best-corrected visual acuity (BCVA) after treatment. Two females and one male with a mean age of 34 ± 2.8 years underwent LASIK for high myopia in both eyes. The mean spherical equivalent was −11.42 diopters (D) (range −6.75 to −20.00). The mean time interval between LASIK and the appearance of symptoms was 9.3 ± 8.5 weeks. One patient developed an extrafoveal CNV at the edge of a laser photocoagulation scar, one developed a subfoveal CNV and the third patient developed a juxtafoveal CNV. The mean BCVA at the time of CNV presentation was 0.44 logMAR (range 0.10–0.70 logMAR). Following treatment, the mean BCVA improved to 0.17 logMAR with complete resolution of CNV in two patients. CNV is a rare but potentially blinding complication following LASIK. Short-term good visual outcome can be achieved with timely intervention with current treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ho TK (2007) The development of refractive surgery: a practical perspective. Singapore Med J 48(8):706

    PubMed  CAS  Google Scholar 

  2. Pallikaris IG, Papatzanaki ME, Siganos DS, Tsilimbaris MK (1991) A corneal flap technique for laser in situ keratomileusis. Human studies. Arch Ophthalmol 109:1699–1702

    Article  PubMed  CAS  Google Scholar 

  3. Moretti M (1999) U.S. laser vision correction market explodes. Eye World 12:29–31

    Google Scholar 

  4. Melki SA, Azar DT (2001) LASIK complications: etiology, management and prevention. Surv Ophthalmol 46:95–116

    Article  PubMed  CAS  Google Scholar 

  5. Alireza M, Holger B (2009) Posterior segment complications of laser in situ keratomileusis (LASIK). Surv Ophthalmol 54:433–440

    Article  Google Scholar 

  6. Chen YC, Ma DKH, Yang KJ, Chen TL, Li CY, Lai CC (2001) Bilateral choroidal neovascularization after laser-assisted in situ keratomileusis. Retina 21(2):174–175

    Article  PubMed  Google Scholar 

  7. Ruiz-Moreno JM, Alió JL (2003) Incidence of retinal disease following refractive surgery in 9,239 eyes. J Refract Surg 9(5):534–547

    Google Scholar 

  8. Maturi RK, Kitchens JW, Spitzberg DH, Yu M (2003) Choroidal neovascularization after LASIK. J Refract Surg 19(4):463–464

    PubMed  Google Scholar 

  9. Arevalo JF, Ruiz-Moreno JM, Fernandez CF, Medoza AJ, Ramirez E, Montero JA (2004) Photodynamic therapy with verteporfin for subfoveal choroidal neovascular membranes in highly myopic eyes after laser in situ keratomileusis. Ophthalmic Surg Lasers Imaging 35(1):58–62

    PubMed  Google Scholar 

  10. Saeed M, Poon W, Goyal S, McHugh D, Lee N (2004) Choroidal neovascularization after laser in situ keratomileusis in a patient with low myopia. J Cataract Refract Surg 30(12):2632–2635

    Article  PubMed  Google Scholar 

  11. Pinto RV, Smiddy WE, Culbertson W (2004) Choroidal neovascularization following laser in situ keratomileusis. Ophthalmic Surg Lasers Imaging 35(1):63–66

    PubMed  Google Scholar 

  12. Amat-Peral P, Lugo F, Montero JA et al (2008) Photodynamic therapy with verteporfin in choroidal neovascularization after refractive surgery. Arch Soc Esp Oftalmol 83:539–544

    Article  PubMed  CAS  Google Scholar 

  13. Wong TY, Foster PJ, Hee J et al (2000) Prevalence and risk factors for refractive errors in adult Chinese residents in Singapore. Invest Ophthalmol Vis Sci 41:2486–2494

    PubMed  CAS  Google Scholar 

  14. Curtin BJ (1977) The posterior staphyloma of pathologic myopia. Trans Am Ophthalmol Soc 75:67–86

    PubMed  CAS  Google Scholar 

  15. Johnson DA, Yannuzzi LA, Shakin JL, Lightman DA (1998) Lacquer cracks following neovascularization in pathologic myopia. Retina 18:118–124

    Article  PubMed  CAS  Google Scholar 

  16. Curtin BJ, Karlin DB (1971) Axial length measurements and fundus changes of the myopic eye. Am J Ophthalmol 71:42–53

    PubMed  CAS  Google Scholar 

  17. Ohno-Matsui K, Yoshida T, Futagami S et al (2003) Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia. Br J Ophthalmol 87:570–573

    Article  PubMed  CAS  Google Scholar 

  18. Brancato R, Menchini U, Pece A et al (2011) Dye laser photocoagulation of macular subretinal neovascularization in pathological myopia. A randomized study of three different wavelengths. Int Ophthalmol 11:235–238

    Article  Google Scholar 

  19. Pece A, Brancato R, Avanza P et al (1995) Laser photocoagulation of choroidal neovascularization in pathologic myopia: long-term results. Int Ophthalmol 18:339–344

    Article  CAS  Google Scholar 

  20. Secretan M, Kuhn D, Soubrane G et al (1997) Long-term visual outcome of choroidal neovascularization in pathologic myopia: natural history and laser treatment. Eur J Ophthalmol 7:307–316

    PubMed  CAS  Google Scholar 

  21. Principe AH, Lin DY, Small KW, Aldave AJ (2004) Macular hemorrhage after laser in situ keratomileusis (LASIK) with femtosecond laser flap creation. Am J Ophthalmol 138:657–659

    Article  PubMed  Google Scholar 

  22. Mian SI, Shtein RM (2007) Femtosecond laser-assisted corneal surgery. Curr Opin Ophthalmol 18:295–299

    Article  PubMed  Google Scholar 

  23. Hernandez-Verdejo JL, Teus MA, Roman JM et al (2007) Porcine model to compare real-time intraocular pressure during LASIK with a mechanical microkeratome and femtosecond laser. Invest Ophthalmol Vis Sci 48(1):68–72

    Article  PubMed  Google Scholar 

  24. Dick BH, Willert A, Elling M (2011) Real-time measurement of intraocular pressure during femtosecond laser enabled keratoplasty. J Refract Surg 27(6):399–400

    Article  PubMed  Google Scholar 

  25. Verteporfin in Photodynamic Therapy (VIP) Study Group (2001) Photodynamic therapy of subfoveal choroidal neovascularization in pathologic myopia with verteporfin, 1-year results of a randomized clinical trial-VIP Report No 1. Ophthalmology 108:841–852

    Article  Google Scholar 

  26. Verteporfin in Photodynamic Therapy (VIP) Study Group (2003) Verteporfin therapy of subfoveal choroidal neovascularization in pathologic myopia. 2-year results of a randomized clinical trial—VIP Report No 3. Ophthalmology 110:667–673

    Article  Google Scholar 

  27. Neelam K, Cheung CM, Ohno-Matsui K et al (2012) Choroidal neovascularization in pathological myopia. Prog Retin Eye Res 31:495–525

    Article  PubMed  CAS  Google Scholar 

  28. Baba T, Kubota-Taniai M, Kitahashi M et al (2010) Two-year comparison of photodynamic therapy and intravitreal bevacizumab for treatment of myopic choroidal neovascularization. Br J Ophthalmol 94:864–870

    Article  PubMed  Google Scholar 

  29. Ikuno Y, Nagai Y, Matsuda S et al (2010) Two-year visual results for older Asian women treated with photodynamic therapy or bevacizumab for myopic choroidal neovascularization. Am J Ophthalmol 149:140–146

    Article  PubMed  Google Scholar 

  30. Yoon JU, Byun YJ, Koh HJ (2010) Intravitreal anti-VEGF versus photodynamic therapy with verteporfin for treatment of myopic choroidal neovascularization. Retina 30:418–424

    Article  PubMed  Google Scholar 

  31. Grossniklaus HE, Hutchinson AK, Capone A (1992) Pathologic findings in pathologic myopia. Retina 12:127–133

    Article  PubMed  CAS  Google Scholar 

  32. Augustin AJ, Offermann (2007) Combination therapy for choroidal neovascularization. Drugs Aging 24(12):979–990

    Article  PubMed  CAS  Google Scholar 

  33. Desco CM, Mataix J, Garcia-Pous M et al (2011) Photodynamic therapy and bevacizumab to treat myopic neovascular membranes. 1-year follow-up. Retina 31:475–481

    Article  PubMed  CAS  Google Scholar 

  34. Han DP, McAllister JT, Weinberg DV (2010) Combined intravitreal anti-VEGF and verteporfin photodynamic therapy for juxtafoveal and extrafoveal choroidal neovascularization as an alternative to laser photocoagulation. Eye 24:713–716

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr Albert Sim of Khoo Teck Puat Hospital for putting together images for this article. The authors have not received any grants nor funding for this work.

Conflicts of interest

There are no competing interests and the authors have no proprietary interests in the materials presented herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kah-Guan Au Eong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neo, H.Y., Neelam, K., Yip, C.C. et al. Choroidal neovascularization following laser in situ keratomileusis for high myopia: a case series. Int Ophthalmol 33, 27–34 (2013). https://doi.org/10.1007/s10792-012-9622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-012-9622-5

Keywords

Navigation