Skip to main content

Advertisement

Log in

Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI)

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

The Retinal Functional Imager (RFI) is a novel method for assessing retinal blood flow (RBF) velocity. The purpose of this study was to evaluate RBF velocities in normal human retinas using the RFI. RBF velocity measurements were performed in normal subjects using the RFI (Optical Imaging Ltd., Rehovot, Israel) at the Retina Center of The New York Eye and Ear Infirmary, New York, USA. Using proprietary software processing, the characteristics of the RBF were visualized and measured. The study population comprised fifty-four eyes of 27 normal subjects (20 male and 34 female). The average arterial blood flow velocity was 4.6 ± 0.6 mm/s in males and 4.8 ± 0.7 mm/s in females (the difference was not statistically significant, p value = 0.27). The average venous blood flow velocity was 3.8 ± 0.5 mm/s in males and 3.6 ± 0.4 mm/s in females (the difference again was not statistically significant, p value = 0.11). The average arterial blood flow velocity was 4.8 ± 0.5 mm/s in the right eye and 4.6 ± 0.7 mm/s in the left eye. The average venous blood flow velocity was 3.7 ± 0.4 mm/s in the right eye and 3.6 ± 0.3 mm/s in the left eye. Venous and arterial blood flow velocities were found to be faster in the right eye than in the left eye in our sample, but the differences were not statistically significant (p value = 0.53 and 0.33, respectively). This is the first report of quantification of the RBF using the RFI. The RFI appears to be an effective tool in quantitative evaluations of RBF velocities. The values from the study constitute a normative database which can be used to evaluate and compare eyes with known or suspected pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Horio N, Clermont AC, Abiko A et al (2004) Angiotensin AT 1 receptor antagonism normalizes retinal blood flow and acetylcholine-induced vasodilation in normotensive diabetic rats. Diabetologia 47:113–123. doi:10.1007/s00125-003-1262-x

    Article  PubMed  CAS  Google Scholar 

  2. Hata Y, Clermont A, Yamauchi T et al (2000) Retinal expression, regulation, and functional bioactivity of prostacyclin-stimulating factor. J Clin Invest 106(4):541–550. doi:10.1172/JCI8338

    Article  PubMed  CAS  Google Scholar 

  3. Kurioka Y, Inaba M, Kawagishi T et al (2001) Increased retinal blood flow in patients with Graves’ disease: influence of thyroid function and ophthalmopathy. Eur J Endocrinol 144:99–107. doi:10.1530/eje.0.1440099

    Article  PubMed  CAS  Google Scholar 

  4. Feke GT, Tagawa H, Deupree DM et al (1989) Blood flow in the normal human retina. Invest Ophthalmol Vis Sci 30:58–65

    PubMed  CAS  Google Scholar 

  5. Harris A et al (2003) Atlas of ocular blood flow: vascular anatomy, pathophysiology and metabolism. Butterworth-Heinemann, Philadelphia

    Google Scholar 

  6. Wang Y, Bower BA, Izatt JA, Tan O, Huang D (2007) In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J Biomed Opt 12:041215. doi:10.1117/1.2772871

    Article  PubMed  Google Scholar 

  7. Pournaras CJ, Rungger-Brändle E, Riva CE et al (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27(3):284–330. doi:10.1016/j.preteyeres.2008.02.002

    Article  PubMed  CAS  Google Scholar 

  8. Rechtman E, Harris A, Kumar R et al (2003) An update on retinal circulation assessment technologies. Curr Eye Res 27(6):329–343. doi:10.1076/ceyr.27.6.329.18193

    Article  PubMed  Google Scholar 

  9. Nelson DA, Krupsky S, Pollack A et al (2005) Special report: noninvasive multi-parameter functional optical imaging of the eye. Ophthalmic Surg Lasers Imaging 36:57–66

    PubMed  Google Scholar 

  10. Landa G, Garcia PM, Rosen RB (2009) Correlation between retina blood flow velocity assessed by retinal function imager and retina thickness estimated by scanning laser ophthalmoscopy/optical coherence tomography. Ophthalmologica 223(3):155–161

    Article  PubMed  Google Scholar 

  11. Jensen PS, Glucksberg MR (1998) Regional variation in capillary hemodynamics in the cat retina. Invest Ophthalmol Vis Sci 39:407–414

    PubMed  CAS  Google Scholar 

  12. Garcia JP Jr, Garcia PT, Rosen RB (2002) Retinal blood flow in the normal human eye using the canon laser blood flowmeter. Ophthalmic Res 34:295–299. doi:10.1159/000065600

    Article  PubMed  Google Scholar 

  13. Shimada N, Ohno-Matsui K, Harino S et al (2004) Reduction of retinal blood flow in high myopia. Graefes Arch Clin Exp Ophthalmol 242(4):284–288. doi:10.1007/s00417-003-0836-0

    Article  PubMed  Google Scholar 

  14. Iester M, Torre PG, Bricola G, Bagnis A, Calabria G (2007) Retinal blood flow autoregulation after dynamic exercise in healthy young subjects. Ophthalmologica 221(3):180–185. doi:10.1159/000099298

    Article  PubMed  Google Scholar 

  15. Wolf S, Arend O, Reim M (1994) Measurement of retinal hemodynamics with scanning laser ophthalmoscopy: reference values and variation. Surv Ophthalmol 38:S95–S100. doi:10.1016/0039-6257(94)90052-3

    Article  PubMed  Google Scholar 

  16. Rojanapongpun P, Drance SM (1993) Velocity of ophthalmic arterial flow recorded by Doppler ultrasound in normal subjects. Am J Ophthalmol 115(2):174–180

    PubMed  CAS  Google Scholar 

  17. Ustymowicz A, Mariak Z, Weigele J et al (2005) Normal reference intervals and ranges of side-to-side and day-to-day variability of ocular blood flow Doppler parameters. Ultrasound Med Biol 31(7):895–903. doi:10.1016/j.ultrasmedbio.2005.03.013

    Article  PubMed  Google Scholar 

  18. Yoshida A, Feke GT, Ogasawara H, Goger DG, McMeel JW (1996) Retinal hemodynamics in middle-aged normal subjects. Ophthalmic Res 28(6):343–350

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Darin Nelson for help with preparation of this manuscript.

Conflict of interest

No author has any conflict or commercial interest in any material or method mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Rosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landa, G., Jangi, A.A., Garcia, P.M.T. et al. Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI). Int Ophthalmol 32, 211–215 (2012). https://doi.org/10.1007/s10792-012-9547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-012-9547-z

Keywords

Navigation