Skip to main content

Advertisement

Log in

Myeloid-derived suppressor cells (MDSCs) in brain cancer: challenges and therapeutic strategies

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

The most fatal malignancy of the central nervous system (CNS) is glioblastoma. Brain cancer is a ‘cold’ tumor because of fewer immunoregulatory cells and more immunosuppressive cells. Due to the cold nature of brain cancers, conventional treatments which are used to manage glioma patients show little effectiveness. Glioma patients even showed resistance to immune checkpoint blockade (ICB) and no significant efficacy. It has been shown that myeloid-derived suppressor cells (MDSCs) account for approximately 30–50% of the tumor mass in glioma. This study aimed to review MDSC function in brain cancer, as well as possible treatments and related challenges. In brain cancer and glioma, several differences in the context of MDSCs have been reported, including disagreements about the MDSC subtype that has the most inhibitory function in the brain, or inhibitory function of regulatory B cells (Bregs). There are also serious challenges in treating glioma patients. In addition to the cold nature of glioma, there are reports of an increase in MDSCs following conventional chemotherapy treatments. As a result, targeting MDSCs in combination with other therapies, such as ICB, is essential, and recent studies with the combination therapy approach have shown promising therapeutic effects in brain cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alban TJ, Alvarado AG, Sorensen MD, Bayik D, Volovetz J, Serbinowski E, Onzi GR (2018) Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. JCI Insight 3(21):e122264

    PubMed Central  Google Scholar 

  • Alban TJ, Bayik D, Otvos B, Rabljenovic A, Leng L, Jia-Shiun L, Mohammadi AM (2020) Glioblastoma myeloid-derived suppressor cell subsets express differential macrophage migration inhibitory factor receptor profiles that can be targeted to reduce immune suppression. Front Immunol 11:1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689

    CAS  PubMed  Google Scholar 

  • Anestakis D, Petanidis S, Domvri K, Tsavlis D, Zarogoulidis P, Katopodi T (2020) Carboplatin chemoresistance is associated with CD11b+/Ly6C+ myeloid release and upregulation of TIGIT and LAG3/CD160 exhausted T cells. Mol Immunol 118:99–109

    CAS  PubMed  Google Scholar 

  • Aslan K, Turco V, Blobner J, Sonner JK, Liuzzi AR, Núñez NG, Green E (2020) Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun 11(1):1–14

    Google Scholar 

  • Bayik D, Zhou Y, Park C, Hong C, Vail D, Silver DJ, Lo A (2020) Myeloid-derived suppressor cell subsets drive glioblastoma growth in a sex-specific manner. Cancer Discov 10(8):1210–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bijangi-Vishehsaraei K, Saadatzadeh MR, Wang H, Nguyen A, Kamocka MM, Cai W, Pollok KE (2017) Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways. J Neurosurg 127(6):1219–1230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butowski N, Colman H, De Groot JF, Omuro AM, Nayak L, Wen PY, Perry A (2015) Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy foundation early phase clinical trials consortium phase II study. Neuro Oncol 18(4):557–564

    PubMed  PubMed Central  Google Scholar 

  • Candolfi M, Curtin JF, Yagiz K, Assi H, Wibowo MK, Alzadeh GE, Keech N (2011) B cells are critical to T-cell—mediated antitumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma. Neoplasia 13(10):947-IN923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Pytel P (2016) CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Can Res 76(19):5671–5682

    CAS  Google Scholar 

  • Cheng P, Kumar V, Liu H, Youn J-I, Fishman M, Sherman S, Gabrilovich D (2013) Effects of notch signaling on regulation of myeloid cell differentiation in cancer. Cancer Res 74(1):141–152

    PubMed  Google Scholar 

  • Chiu DKC, Xu IMJ, Lai RKH, Tse APW, Wei LL, Koh HY, Wong CM (2016) Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C–C motif) ligand 26. Hepatology 64(3):797–813

    CAS  PubMed  Google Scholar 

  • Clarke RH, Moosa S, Anzivino M, Wang Y, Floyd DH, Purow BW, Lee KS (2014) Sustained radiosensitization of hypoxic glioma cells after oxygen pretreatment in an animal model of glioblastoma and in vitro models of tumor hypoxia. PLoS One 9(10):e111199

    PubMed  PubMed Central  Google Scholar 

  • Clavijo PE, Moore EC, Chen J, Davis RJ, Friedman J, Kim Y, Allen CT (2017) Resistance to CTLA-4 checkpoint inhibition reversed through selective elimination of granulocytic myeloid cells. Oncotarget 8(34):55804

    PubMed  PubMed Central  Google Scholar 

  • Condamine T, Gabrilovich DI (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32(1):19–25

    CAS  PubMed  Google Scholar 

  • Condamine T, Mastio J, Gabrilovich DI (2015) Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol 98(6):913–922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Condamine T, Dominguez GA, Youn J-I, Kossenkov AV, Mony S, Alicea-Torres K, Lin C (2016) Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci immunol 1(2):aaf8943

    PubMed  PubMed Central  Google Scholar 

  • Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182(9):5693–5701

    CAS  PubMed  Google Scholar 

  • De Leo A, Ugolini A, Veglia F (2021) Myeloid cells in glioblastoma microenvironment. Cells 10(1):18

    Google Scholar 

  • Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, Al-Quran SZ (2007) MyD88-dependent expansion of an immature GR-1+ CD11b+ population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204(6):1463–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dumitru CA, Moses K, Trellakis S, Lang S, Brandau S (2012) Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 61(8):1155–1167

    CAS  PubMed  Google Scholar 

  • Fisher T, Galanti G, Lavie G, Jacob-Hirsch J, Kventsel I, Zeligson S, Rechavi G (2007) Mechanisms operative in the antitumor activity of temozolomide in glioblastoma multiforme. Cancer J 13(5):335–344

    CAS  PubMed  Google Scholar 

  • Flores-Toro JA, Luo D, Gopinath A, Sarkisian MR, Campbell JJ, Charo IF, Jain RK (2020) CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc Natl Acad Sci 117(2):1129–1138

    CAS  PubMed  Google Scholar 

  • Fu W, Wang W, Li H, Jiao Y, Huo R, Yan Z, Chen D (2020) Single-cell atlas reveals complexity of the immunosuppressive microenvironment of initial and recurrent glioblastoma. Front Immunol 11:835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Kohanbash G, Fellows-Mayle W, Hamilton RL, Komohara Y, Decker SA, Okada H (2011) COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Can Res 71(7):2664–2674

    CAS  Google Scholar 

  • Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60(10):1419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich DI, Bronte V, Chen S-H, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H (2007) The terminology issue for myeloid-derived suppressor cells. Can Res 67(1):425–425

    CAS  Google Scholar 

  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garnier D, Renoult O, Alves-Guerra M-C, Paris F, Pecqueur C (2019) Glioblastoma stem-like cells, metabolic strategy to kill a challenging target. Front Oncol 9:118

    PubMed  PubMed Central  Google Scholar 

  • Gielen PR, Schulte BM, Kers-Rebel ED, Verrijp K, Petersen-Baltussen HM, Ter Laan M, Adema GJ (2015) Increase in both CD14-positive and CD15-positive myeloid-derived suppressor cell subpopulations in the blood of patients with glioma but predominance of CD15-positive myeloid-derived suppressor cells in glioma tissue. J Neuropathol Exp Neurol 74(5):390–400

    CAS  PubMed  Google Scholar 

  • Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, Umansky V (2019) Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer 120(1):16–25

    CAS  PubMed  Google Scholar 

  • He D, Li H, Yusuf N, Elmets CA, Li J, Mountz JD, Xu H (2010) IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol 184:2281

    CAS  PubMed  Google Scholar 

  • Hejrati A, Taghadosi M, Alizadeh-Navaei R, Hosseinzadeh S, Bashash D, Esmaili M, Zafari P (2020) Neopterin serum level does not reflect the disease activity in rheumatoid arthritis: a systematic review and meta-analysis. IUBMB Life 72(12):2563–2571. https://doi.org/10.1002/iub.2398

    Article  CAS  PubMed  Google Scholar 

  • Highfill SL, Rodriguez PC, Zhou Q, Goetz CA, Koehn BH, Veenstra R, Munn DH (2010) Bone marrow myeloid-derived suppressor cells (MDSC) inhibit graft-versus-host (GVHD) disease via an arginase-1 dependent mechanism that is upregulated by IL-13. Blood 116:5738 (blood-2010-2006-287839)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou A, Hou K, Huang Q, Lei Y, Chen W (2020) Targeting myeloid-derived suppressor cell, a promising strategy to overcome resistance to immune checkpoint inhibitors. Front Immunol 11:783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kahlert U, Mooney S, Natsumeda M, Steiger HJ, Maciaczyk J (2017) Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways. Int J Cancer 140(1):10–22

    CAS  PubMed  Google Scholar 

  • Kamran N, Kadiyala P, Saxena M, Candolfi M, Li Y, Moreno-Ayala MA, Castro MG (2017) Immunosuppressive myeloid cells’ blockade in the glioma microenvironment enhances the efficacy of immune-stimulatory gene therapy. Mol Ther 25(1):232–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohanbash G, Okada H (2012) Myeloid-derived suppressor cells (MDSCs) in gliomas and glioma-development. Immunol Invest 41(6–7):658–679

    CAS  PubMed  Google Scholar 

  • Kong Y, Fuchsberger M, Xiang S, Apostolopoulos V, Plebanski M (2013) Myeloid derived suppressor cells and their role in diseases. Curr Med Chem 20(11):1437–1444

    CAS  PubMed  Google Scholar 

  • Kumar R, De Mooij T, Peterson TE, Kaptzan T, Johnson AJ, Daniels DJ, Parney IF (2017) Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane. PloS One 12(6):e0179012

    PubMed  PubMed Central  Google Scholar 

  • Lathers DM, Clark JI, Achille NJ, Young MRI (2004) Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3. Cancer Immunol Immunother 53(5):422–430. https://doi.org/10.1007/s00262-003-0459-7

    Article  CAS  PubMed  Google Scholar 

  • Lee B-R, Chang S-Y, Hong E-H, Kwon B-E, Kim HM, Kim Y-J, Ko H-J (2014) Elevated endoplasmic reticulum stress reinforced immunosuppression in the tumor microenvironment via myeloid-derived suppressor cells. Oncotarget 5(23):12331

    PubMed  PubMed Central  Google Scholar 

  • Lee-Chang C, Rashidi A, Miska J, Zhang P, Pituch KC, Hou D, Appin CL (2019) Myeloid-derived suppressive cells promote B cell-mediated immunosuppression via transfer of PD-L1 in glioblastoma. Cancer Immunol Res 7(12):1928–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lesniak M (2013) Targeting tregs in malignant brain cancer: overcoming IDO. Front Immunol 4:116

    PubMed  PubMed Central  Google Scholar 

  • Liang H, Deng L, Hou Y, Meng X, Huang X, Rao E, Xu M (2017) Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat Commun 8(1):1–10

    Google Scholar 

  • Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ (2013) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138(2):105–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Xiang X, Zhuang X, Zhang S, Liu C, Cheng Z, Zhang H-G (2010) Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol 176(5):2490–2499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu T, Ramakrishnan R, Altiok S, Youn J-I, Cheng P, Celis E, Gabrilovich D (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Investig 121(10):4015–4029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maes W, Van Gool SW (2011) Experimental immunotherapy for malignant glioma: lessons from two decades of research in the GL261 model. Cancer Immunol Immunother 60(2):153–160

    CAS  PubMed  Google Scholar 

  • Mandruzzato S, Brandau S, Britten CM, Bronte V, Damuzzo V, Gouttefangeas C, Welters MJ (2016) Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunol Immunother 65(2):161–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Sica A, Allavena P, Garlanda C, Locati M (2009) Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 70(5):325–330

    CAS  PubMed  Google Scholar 

  • Masui K, Cloughesy T, Mischel P (2012) Molecular pathology in adult high-grade gliomas: from molecular diagnostics to target therapies. Neuropathol Appl Neurobiol 38(3):271–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messmer MN, Netherby CS, Banik D, Abrams SI (2015) Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy. Cancer Immunol Immunother 64(1):1–13

    CAS  PubMed  Google Scholar 

  • Mi Y, Guo N, Luan J, Cheng J, Hu Z, Jiang P, Jin W, Gao X (2020) The emerging role of myeloid-derived suppressor cells in the glioma immune suppressive microenvironment. Front Immunol 11:737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moertel CL, Xia J, LaRue R, Waldron NN, Andersen BM, Prins RM, Hunt MA (2014) CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy. J Immunother Cancer 2(1):1–10

    Google Scholar 

  • Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell–suppressive activity. Blood 111(8):4233–4244

    CAS  PubMed  Google Scholar 

  • Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13(7):828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaraj S, Youn J-I, Gabrilovich DI (2013) Reciprocal relationship between myeloid-derived suppressor cells and T cells. J Immunol 191(1):17–23

    CAS  PubMed  Google Scholar 

  • Nam S, Lee A, Lim J, Lim J-S (2019) Analysis of the expression and regulation of PD-1 protein on the surface of myeloid-derived suppressor cells (MDSCs). Biomol Ther 27(1):63

    CAS  Google Scholar 

  • Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI (2007a) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Can Res 67(22):11021–11028

    CAS  Google Scholar 

  • Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI (2007b) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res 67(22):11021–11028. https://doi.org/10.1158/0008-5472.can-07-2593

    Article  CAS  PubMed  Google Scholar 

  • Nourbakhsh E, Mohammadi A, Parizi MS, Mansouri, A, Ebrahimzadeh F (2021) Role of myeloid-derived suppressor cell (MDSC) in autoimmunity and its potential as a therapeutic target. Inflammopharmacology 1–9.

  • Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P (2011) Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118(20):5498–5505. https://doi.org/10.1182/blood-2011-07-365825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh T, Fakurnejad S, Sayegh ET, Clark AJ, Ivan ME, Sun MZ, Parsa AT (2014) Immunocompetent murine models for the study of glioblastoma immunotherapy. J Transl Med 12(1):1–10

    Google Scholar 

  • Oh M-H, Sun I-H, Zhao L, Leone RD, Sun I-M, Xu W, Patel CH (2020) Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Clin Investig 130(7):3865–3884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oseroff A, Okada S, Strober S (1984) Natural suppressor (NS) cells found in the spleen of neonatal mice and adult mice given total lymphoid irradiation (TLI) express the null surface phenotype. J Immunol 132(1):101–110

    CAS  PubMed  Google Scholar 

  • Ostrand-Rosenberg S, Fenselau C (2018) Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J Immunol 200(2):422–431

    CAS  PubMed  Google Scholar 

  • Otvos B, Silver DJ, Mulkearns-Hubert EE, Alvarado AG, Turaga SM, Sorensen MD, Stoltz K (2016) Cancer stem cell-secreted macrophage migration inhibitory factor stimulates myeloid derived suppressor cell function and facilitates glioblastoma immune evasion. Stem Cells 34(8):2026–2039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peereboom DM, Alban TJ, Grabowski MM, Alvarado AG, Otvos B, Bayik D, Mohammadi AM (2019) Metronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cells. JCI Insight 4(22):e130748

    PubMed Central  Google Scholar 

  • Peñaloza HF, Alvarez D, Muñoz-Durango N, Schultz BM, González PA, Kalergis AM, Bueno SM (2019) The role of myeloid-derived suppressor cells in chronic infectious diseases and the current methodology available for their study. J Leukoc Biol 105(5):857–872

    PubMed  Google Scholar 

  • Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Teijeiro V (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10):1264–1272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT, Joyce JA (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352(6288):aad3018

    PubMed  PubMed Central  Google Scholar 

  • Rajabinejad M, Salari F, Gorgin Karaji A, Rezaiemanesh A (2019) The role of myeloid-derived suppressor cells in the pathogenesis of rheumatoid arthritis; anti-or pro-inflammatory cells? Artif Cells Nanomed Biotechnol 47(1):4149–4158

    CAS  PubMed  Google Scholar 

  • Rajabinejad M, Ranjbar S, Afshar Hezarkhani L, Salari F, Gorgin Karaji A, Rezaiemanesh A (2020) Regulatory T cells for amyotrophic lateral sclerosis/motor neuron disease: a clinical and preclinical systematic review. J Cell Physiol 235(6):5030–5040

    CAS  PubMed  Google Scholar 

  • Ramachandran C, Nair SM, Escalon E, Melnick SJ (2012) Potentiation of etoposide and temozolomide cytotoxicity by curcumin and turmeric force in brain tumor cell lines. J Complement Integr Med 9(1):20

    Google Scholar 

  • Raychaudhuri B, Rayman P, Ireland J, Ko J, Rini B, Borden EC, Finke J (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 13(6):591–599

    PubMed  PubMed Central  Google Scholar 

  • Ribechini E, Hutchinson JA, Hergovits S, Heuer M, Lucas J, Schleicher U, Brackmann H (2017) Novel GM-CSF signals via IFN-γR/IRF-1 and AKT/mTOR license monocytes for suppressor function. Blood Adv 1(14):947–960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts JL, Booth L, Conley A, Cruickshanks N, Malkin M, Kukreja RC, Dent P (2014) PDE5 inhibitors enhance the lethality of standard of care chemotherapy in pediatric CNS tumor cells. Cancer Biol Ther 15(6):758–767

    PubMed  PubMed Central  Google Scholar 

  • Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Ochoa AC (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202(7):931–939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sade-Feldman M, Kanterman J, Ish-Shalom E, Elnekave M, Horwitz E, Baniyash M (2013) Tumor necrosis factor-α blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity 38(3):541–554

    CAS  PubMed  Google Scholar 

  • Sahakian E, Powers JJ, Chen J, Deng SL, Cheng F, Distler A, Youn J-I (2015) Histone deacetylase 11: a novel epigenetic regulator of myeloid derived suppressor cell expansion and function. Mol Immunol 63(2):579–585

    CAS  PubMed  Google Scholar 

  • Samimi Z, Kardideh B, Zafari P, Bahrehmand F, Roghani SA, Taghadosi M (2019) The impaired gene expression of adenosine monophosphate-activated kinase (AMPK), a key metabolic enzyme in leukocytes of newly diagnosed rheumatoid arthritis patients. Mol Biol Rep 46(6):6353–6360

    CAS  PubMed  Google Scholar 

  • Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Borrello I (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203(12):2691–2702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Can Res 67(9):4507–4513

    CAS  Google Scholar 

  • Solito S, Marigo I, Pinton L, Damuzzo V, Mandruzzato S, Bronte V (2014) Myeloid-derived suppressor cell heterogeneity in human cancers. Ann NY Acad Sci 1319(1):47–65

    CAS  PubMed  Google Scholar 

  • Souza FdC, Ferreira MT, Colquhoun A (2020) Influence of lipoxygenase inhibition on glioblastoma cell biology. Int J Mol Sci 21(21):8395. https://doi.org/10.3390/ijms21218395

    Article  CAS  PubMed Central  Google Scholar 

  • Stylli SS (2020) Novel treatment strategies for glioblastoma. Multidisciplinary Digital Publishing Institute, Basel

    Google Scholar 

  • Stylli SS, Luwor RB, Ware TM, Tan F, Kaye AH (2015) Mouse models of glioma. J Clin Neurosci 22(4):619–626

    PubMed  Google Scholar 

  • Talmadge J, Reed E, Kessinger A, Kuszynski C, Perry G, Gordy C, Letheby B (1996) Immunologic attributes of cytokine mobilized peripheral blood stem cells and recovery following transplantation. Bone Marrow Transplant 17(1):101–110

    CAS  PubMed  Google Scholar 

  • Talmadge JE, Hood KC, Zobel LC, Shafer LR, Coles M, Toth B (2007) Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol 7(2):140–151

    CAS  PubMed  Google Scholar 

  • Thevenot PT, Sierra RA, Raber PL, Al-Khami AA, Trillo-Tinoco J, Zarreii P, Rodriguez PC (2014) The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors. Immunity 41(3):389–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B, Fox JG (2008) Overexpression of interleukin-1β induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14(5):408–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Woude LL, Gorris MA, Halilovic A, Figdor CG, de Vries IJM (2017) Migrating into the tumor: a roadmap for T cells. Trends Cancer 3(11):797–808

    PubMed  Google Scholar 

  • Veglia F, Perego M, Gabrilovich D (2018) Myeloid-derived suppressor cells coming of age. Nat Immunol 1:108

    Google Scholar 

  • Venneti S, Huse JT (2015) The evolving molecular genetics of low-grade glioma. Adv Anat Pathol 22(2):94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weed DT, Vella JL, Reis IM, Adriana C, Gomez C, Sargi Z, Serafini P (2015) Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res 21(1):39–48

    CAS  PubMed  Google Scholar 

  • Wesseling P, Capper D (2018) WHO 2016 classification of gliomas. Neuropathol Appl Neurobiol 44(2):139–150

    CAS  PubMed  Google Scholar 

  • Wu W-C, Sun H-W, Chen J, OuYang H-Y, Yu X-J, Chen H-T, Zheng L (2019) Immunosuppressive immature myeloid cell generation is controlled by glutamine metabolism in human cancer. Cancer Immunol Res 7(10):1605–1618

    CAS  PubMed  Google Scholar 

  • Xu K, Wang L, Shu H-KG (2014) COX-2 overexpression increases malignant potential of human glioma cells through Id1. Oncotarget 5(5):1241–1252. https://doi.org/10.18632/oncotarget.1370

    Article  PubMed  Google Scholar 

  • Yan J, Kong L-Y, Hu J, Gabrusiewicz K, Dibra D, Xia X, Li S (2015) FGL2 as a multimodality regulator of tumor-mediated immune suppression and therapeutic target in gliomas. J Natl Cancer Inst 107(8):djv137

    PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang L, Yu C, Yang X-F, Wang H (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2(1):1

    PubMed  PubMed Central  Google Scholar 

  • Yazdani Z, Rafiei A, Golpour M, Zafari P, Moonesi M, Ghaffari S (2020) IL-35, a double-edged sword in cancer. J Cell Biochem 121(3):2064–2076

    CAS  PubMed  Google Scholar 

  • Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91(1):167–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zafari P, Zarifian A, Alizadeh-Navaei R, Taghadosi M, Rafiei A, Samimi Z, Niksolat F (2020) Asymmetric and symmetric dimethylarginine concentration as an indicator of cardiovascular diseases in rheumatoid arthritis patients: a systematic review and meta-analysis of case-control studies. Clin Rheumatol 39(1):127–134

    PubMed  Google Scholar 

  • Zhai L, Ladomersky E, Lauing KL, Wu M, Genet M, Gritsina G, Sosman JA (2017) Infiltrating T cells increase IDO1 expression in glioblastoma and contribute to decreased patient survival. Clin Cancer Res 23(21):6650–6660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Jia H, Liu J, Yang Z, Jiang T, Tang K, Shen G-X (2010) Depletion of regulatory T cells facilitates growth of established tumors: a mechanism involving the regulation of myeloid-derived suppressor cells by lipoxin A4. J Immunol 185(12):7199–7206

    CAS  PubMed  Google Scholar 

  • Zhu X, Fujita M, Snyder LA, Okada H (2011) Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. J Neurooncol 104(1):83–92

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

MS and FE contributed to the idea design and literature search. FS wrote parts of the manuscript. AM contributed to designing the figures. SA and SV contributed to language editing and revision.

Corresponding author

Correspondence to Farnoosh Ebrahimzadeh.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salemizadeh Parizi, M., Salemizadeh Parizi, F., Abdolhosseini, S. et al. Myeloid-derived suppressor cells (MDSCs) in brain cancer: challenges and therapeutic strategies. Inflammopharmacol 29, 1613–1624 (2021). https://doi.org/10.1007/s10787-021-00878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-021-00878-9

Keywords

Navigation