Skip to main content

Advertisement

Log in

Evaluation of the anti-inflammatory and urotoxicity ameliorative effects of γ-humulene containing active fraction of Emilia sonchifolia (L.) DC.

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

In folklore medicine, the plant Emilia sonchifolia, belonging to the family Asteraceae, is used for treating tumour and inflammation. In our previous studies, we have done a thorough phytochemical investigation of E. sonchifolia with a report on its potent antimetastatic activity. Further, we isolated and characterised its active fraction (AFES) containing the major compound γ-humulene with an evaluation of the antiangiogenic effect of AFES (5 mg/kg b.wt.). In the first part of the present study, AFES in different concentrations was used for the assessment of its possible anti-inflammatory effect employing three in vivo inflammatory models. Further using the most effective concentration of AFES 5 mg/kg b.wt, its effect on proinflammatory cytokine levels was recorded along with a confirmatory gene expression analysis. The results manifested with a reduction in the paw oedema significantly decreased levels of proinflammatory cytokines, C-reactive protein, nitric oxide and also there was an efficient downregulation of cyclooxygenase-2 and inducible nitric oxide. Urotoxicity is one of the major side effects of conventional chemotherapy. So in the second part of the study, we used AFES in combination with the conventional therapeutic agent cyclophosphamide in vivo in mice. The effect of AFES on urotoxicity was assessed from various biochemical parameters, cytokine markers and finally with a histopathology of the bladder. The current study revealed the protective effects of AFES, implicating reduced levels of urea nitrogen, by revamping of glutathione and marker cytokine levels towards positive amelioration. The results obtained altogether proved the safeguarding effect of AFES in murine experimental models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFES:

Active fraction from Emilia sonchifolia

CP:

Cyclophosphamide

ip:

Intraperitoneal

b.wt.:

Body weight

LPS:

Lipopolysaccharide

IFN- γ:

Interferon-γ

IL-2:

Interleukin-2

TNF-α:

Tumour necrosis factor-α

IL-6:

Interleukin-6

IL-1β:

Interleukin-1β

CRP:

C-reactive protein

GSH:

Glutathione

MESNA:

Sodium 2-mercaptoethanesulfonate

BUN:

Blood urea nitrogen

UUN:

Urine urea nitrogen

COX-2:

cyclooxygenase-2

iNOS:

Inducible nitric oxide

NO:

Nitric oxide

MMP:

Matrix metalloproteinase

References

  • Arjaans M, Schröder C, Oosting S, Dafni U (2016) VEGF pathway targeting agents, vessel normalization and tumor drug uptake: from bench to bedside. Oncotarget 7:21247–21258

    Article  PubMed  PubMed Central  Google Scholar 

  • Berlin L, Mu Hugh SL (1999) Physician’s drug handbook, 8th edn. Springhouse Corp, Springhouse

    Google Scholar 

  • Bhatia K, Kaur M, Atif F et al (2006) Aqueous extract of Trigonella foenum-graecum L. ameliorates additive urotoxicity of buthionine sulfoximine and cyclophosphamide in mice. Food Chem Toxicol 44:1744–1750

    Article  CAS  PubMed  Google Scholar 

  • Boscá L, Zeini M, Través P, Hortelano S (2005) Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology 208:249–258

    Article  CAS  PubMed  Google Scholar 

  • Campling BG, Pym J, Baker HM et al (1991) Chemosensitivity testing of small cell lung cancer using the MTT assay. Br J Cancer 63:75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JY, Lewis A (1989) Pharmacological methods in the control of inflammation. A.R. Liss, New York

    Google Scholar 

  • Cole SP (1986) Rapid chemosensitivity testing of human lung tumor cells using the MTT assay. Cancer Chemother Pharmacol 17:259–263

    Article  CAS  PubMed  Google Scholar 

  • Couto V, Vilela F, Dias D, dos Santos M (2011) Antinociceptive effect of extract of Emilia sonchifolia in mice. J Ethnopharmacol 134:348–353

    Article  PubMed  Google Scholar 

  • Culling CFA (1974) Handbook of histopathological and histochemical techniques, 3rd edn. Butterworth-Heinemann, London

    Google Scholar 

  • Devi D, Lija Y, Cibin T et al (2006) Evaluation of the protective effects of Emilia sonchifolia Linn. (DC.) on perchlorate-induced oxidative damage. J Biol Sci 6:887–892

    Article  Google Scholar 

  • Dvorak H (1986) Tumors: wounds that do not heal. N Engl J Med 315:1650–1659

    Article  CAS  PubMed  Google Scholar 

  • Erickson D, Tomaszewski J, Kunselman A (2005) Do the national institute of diabetes and digestive and kidney diseases cystoscopic criteria associate with other clinical and objective features of interstitial cystitis? J Urol 173:93–97

    Article  PubMed  Google Scholar 

  • Fernandes E, Passos G, Medeiros R (2007) Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. J Pharmacol 569:228–236

    CAS  Google Scholar 

  • Firdous A, Kuttan G, Kuttan R (2015) Anti-inflammatory potential of carotenoid meso-zeaxanthin and its mode of action. Pharm Biol 53:961–967

    Article  CAS  PubMed  Google Scholar 

  • George GK, Kuttan G (2015) Immune response modulatory effect of Emilia sonchifolia (L.) DC: an in vivo experimental study. J Basic Clin Physiol Pharmacol 26:613–622

    Google Scholar 

  • George GK, Kuttan G (2016) Inhibition of pulmonary metastasis by Emilia sonchifolia (L.) DC: an in vivo experimental study. Phytomedicine 23:123–130

    Article  PubMed  Google Scholar 

  • Gilcy GK, Kuttan G (2016) Evaluation of antiangiogenic efficacy of Emilia sonchifolia (L.) DC on tumor-specific neovessel formation by regulating MMPs, VEGF, and proinflammatory cytokines. Integr Cancer Ther 15(4):NP1–NP12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  • Grivennikov S, Greten F, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, DuBois R (2001) Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1:11–21

    Article  CAS  PubMed  Google Scholar 

  • Igbe I, Ching F, Eromon A (2010) Anti-inflammatory activity of aqueous fruit pulp extract of Hunteria umbellata K. Schum in acute and chronic inflammation. Acta Pol Pharm Drug Res 67:81–85

    Google Scholar 

  • Lan Y, Wu Y, Wu K et al (2011) Death receptor 5-mediated TNFR family signaling pathways modulate γ-humulene-induced apoptosis in human colorectal cancer HT29 cells. Oncol Rep 25:419–424

    CAS  PubMed  Google Scholar 

  • Lan Y, Chiang J, Huang W, Lu C (2012) Activations of both extrinsic and intrinsic pathways in HCT 116 human colorectal cancer cells contribute to apoptosis through p53-mediated ATM/Fas signaling by. Evid-Based Complement Altern Med 2012:1–13

    Article  Google Scholar 

  • Laurence A, Tato C, Davidson T et al (2007) Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26:371–381

    Article  CAS  PubMed  Google Scholar 

  • Lawson M, Vasilaras A, De Vries A (2008) Urological implications of cyclophosphamide and ifosfamide. Scand J Urol Nephrol 42:309–317

    Article  CAS  PubMed  Google Scholar 

  • Lija Y, Biju P, Reeni A, Cibin T (2006) Modulation of selenite cataract by the flavonoid fraction of Emilia sonchifolia in experimental animal models. Phyther Res 20:1091–1095

    Article  CAS  Google Scholar 

  • Maity T, Mandal S, Mukherjee P (1998) Studies on antiinflammatory effect of Cassia tora leaf extract (fam. Leguminosae). Phytotherapy 12:221–223

    Article  Google Scholar 

  • Manesh C, Kuttan G (2002) Alleviation of cyclophosphamide-induced urotoxicity by naturally occurring sulphur compounds. J Exp Clin cancer 21:509–517

    CAS  Google Scholar 

  • Masella R, Varì R, D’Archivio M (2004) Extra virgin olive oil biophenols inhibit cell-mediated oxidation of LDL by increasing the mRNA transcription of glutathione-related enzymes. J Nutr 134:785–791

    Article  CAS  PubMed  Google Scholar 

  • Moron M, Depierre J, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  CAS  PubMed  Google Scholar 

  • Mühl H, Pfeilschifter J (2003) Anti-inflammatory properties of pro-inflammatory interferon-γ. Int Immunopharmacol 3:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Muko K, Ohiri F (2000) A preliminary study on the anti-inflammatory properties of Emilia sonchifolia leaf extracts. Fitoterapia 71:65–68

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    Article  CAS  PubMed  Google Scholar 

  • Nworu C, Akah P, Okoye F (2012) Inhibition of pro-inflammatory cytokines and inducible nitric oxide by extract of Emilia sonchifolia L. aerial parts. Immunopharmacol Immunotoxicol 34:925–931

    Article  PubMed  Google Scholar 

  • Shylesh B, Padikkala J (2000) In vitro cytotoxic and antitumor property of Emilia sonchifolia (L.) DC in mice. J Ethnopharmacol 73:495–500

    Article  CAS  PubMed  Google Scholar 

  • Shylesh B, Nair S, Subramoniam A (2005) Induction of cell-specific apoptosis and protection from Dalton’s lymphoma challenge in mice by an active fraction from Emilia sonchifolia. Indian J Pharmacol 37:232–237

    Article  CAS  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111:544–547

    Article  CAS  PubMed  Google Scholar 

  • Wood R, Eichel L, Messing E, Schwarz E (2001) Automated noninvasive measurement of cyclophosphamide-induced changes in murine voiding frequency and volume. Urology 57:115–116

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Ghoreschi K, Steward-Tharp S (2011) Opposing regulation of the Il17 locus through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol 12:247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the Council of Scientific and Industrial Research (CSIR), Government of India, for the senior research fellowship provided to Ms. Gilcy George K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girija Kuttan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George Kallivalappil, G., Kuttan, G. Evaluation of the anti-inflammatory and urotoxicity ameliorative effects of γ-humulene containing active fraction of Emilia sonchifolia (L.) DC.. Inflammopharmacol 27, 409–420 (2019). https://doi.org/10.1007/s10787-017-0423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-017-0423-3

Keywords

Navigation