Skip to main content
Log in

Inhibitory effects of Dioscin on atherosclerosis and foam cell formation in hyperlipidemia rats

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Macrophage-derived foam cells are well known for their key role in development of atherosclerosis (AS). The present study aimed to examine whether dioscin exerts anti-atherosclerotic activity and inhibits foam cell formation. A high-fat induced AS model and ox-LDL treated macrophages were established and received treatment of dioscin. Anti-atherosclerotic activity in vivo was assessed by atherosclerotic lesions size and aortic lipid contents. Macrophage formed foam cells were positively identified by oil red o staining. Moreover, the expression of LOX-1 and NF-κB in aorta tissue and macrophages was examined by western blotting assay. Our results showed that dioscin not only reduced the levels of plasma lipid, TNF-a, IL-1β and IL-6, but also inhibited atherosclerotic development in AS rats, as evidenced by decreased atherosclerotic lesions size and aortic lipid level. In vitro study revealed dioscin directly reduced foam cell formation, decreased intracellular cholesterol accumulation and lowered TNF-a, IL-1β and IL-6 secretion in ox-LDL treated macrophages. Interestingly, further work found dioscin significantly reduced expression of LOX-1 and NF-κB in the aortic tissue and ox-LDL treated macrophages. In summary, our study was the first to confirm anti-atherosclerotic activity of dioscin in vivo and vitro. Moreover, the other important finding is dioscin mediated ox-LDL/LOX-1/NF-κB regulated contributions to the attenuate macrophage ox-LDL uptake and AS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aluganti Narasimhulu C, Fernandez-Ruiz I, Selvarajan K, Jiang X, Sengupta B, Riad A, Parthasarathy S (2016) Atherosclerosis—do we know enough already to prevent it? Curr Opin Pharmacol 27:92–102

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar V, Yin J, Mirza AM, Phan D, Vanegas S, Issafras H, Michelson K, Hunter JJ, Kantak SS (2011) Monoclonal antibodies targeting IL-1 beta reduce biomarkers of atherosclerosis in vitro and inhibit atherosclerotic plaque formation in Apolipoprotein E-deficient mice. Atherosclerosis 216:313–320

    Article  CAS  PubMed  Google Scholar 

  • Chase AJ, Bond M, Crook MF, Newby AC (2002) Role of nuclear factor-kappa B activation in metalloproteinase-1, -3, and -9 secretion by human macrophages in vitro and rabbit foam cells produced in vivo. Arterioscler Thromb Vasc Biol 22:765–771

    Article  CAS  PubMed  Google Scholar 

  • Deepa PR, Varalakshmi P (2005) Atheroprotective effect of exogenous heparin-derivative treatment on the aortic disturbances and lipoprotein oxidation in hypercholesterolemic diet fed rats. Clin Chim Acta 355:119–130

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Gao J, Li Y, Yang Y, Dang L, Ye Y, Deng J, Li A (2014) BMP4 enhances foam cell formation by BMPR-2/Smad1/5/8 signaling. Int J Mol Sci 15:5536–5552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass CK, Witztum JL (2001) Atherosclerosis. the road ahead. Cell 104:503–516

    Article  CAS  PubMed  Google Scholar 

  • Goyal T, Mitra S, Khaidakov M, Wang X, Singla S, Ding Z, Liu S, Mehta JL (2012) Current Concepts of the Role of Oxidized LDL Receptors in Atherosclerosis. Curr Atheroscler Rep. 2012 Jan 29. [Epub ahead of print] PMID: 22286193

  • Hashizume M, Mihara M (2012) Atherogenic effects of TNF-α and IL-6 via up-regulation of scavenger receptors. Cytokine 58:424–430

    Article  CAS  PubMed  Google Scholar 

  • Kanters E, Pasparakis M, Gijbels MJ et al (2003) Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J Clin Invest 112:1176–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanters E, Gijbels MJ, van der Made I, Vergouwe MN, Heeringa P, Kraal G, Hofker MH, de Winther MP (2004) Hematopoietic NF-kappaB1 deficiency results in small atherosclerotic lesions with an inflammatory phenotype. Blood 103:934–940

    Article  CAS  PubMed  Google Scholar 

  • Kataoka H, Kume N, Miyamoto S et al (1999) Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation 99:3110–3117

    Article  CAS  PubMed  Google Scholar 

  • Li L, Sawamura T, Renier G (2004) Glucose enhances human macrophage LOX-1 expression: role for LOX-1 in glucose-induced macrophage foam cell formation. Circ Res 94:892–901

    Article  CAS  PubMed  Google Scholar 

  • Li K, Tang Y, Fawcett JP, Gu J, Zhong D (2005) Characterization of the pharmacokinetics of dioscin in rat. Steroids 70:525–530

    Article  CAS  PubMed  Google Scholar 

  • Li HQ, Zhang Q, Chen L et al (2015) Captopril inhibits maturation of dendritic cells and maintains their tolerogenic property in atherosclerotic rats. Int Immunopharmacol 28:715–723

    Article  CAS  PubMed  Google Scholar 

  • Lin YW, Liu PS, Adhikari N, Hall JL, Wei LN (2015) RIP140 contributes to foam cell formation and atherosclerosis by regulating cholesterol homeostasis in macrophages. J Mol Cell Cardiol 79:287–294

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Xu L, Yin L et al (2015a) Potent effects of dioscin against obesity in mice. Sci Rep 5:7973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Xu Y, Han X et al (2015b) Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway. Sci Rep 5:18038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X (2016) Impact of macrophages in atherosclerosis. Curr Med Chem 23:1926–1937

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Xu Y, Xu L, Cong X, Yin L, Li H, Peng J (2012) Mechanism investigation of dioscin against CCl4-induced acute liver damage in mice. Environ Toxicol Pharmacol 34:127–135

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Song L, Yan H et al (2016) Low dose tunicamycin enhances atherosclerotic plaque stability by inducing autophagy. Biochem Pharmacol 100:51–60

    Article  CAS  PubMed  Google Scholar 

  • Martín-Fuentes P, Civeira F, Recalde D, García-Otín AL, Jarauta E, Marzo I, Cenarro A (2007) Individual variation of scavenger receptor expression in human macrophages with oxidized low-density lipoprotein is associated with a differential inflammatory response. J Immunol 179:3242–3248

    Article  PubMed  Google Scholar 

  • Mehta JL, Sanada N, Hu CP et al (2007) Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res 100:1634–1642

    Article  CAS  PubMed  Google Scholar 

  • Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murawska-Cialowicz E, Januszewska L, Zuwala-Jagiello J et al (2008) Melatonin decreases homocysteine level in blood of rats. J Physiol Pharmacol 59:717–729

    CAS  PubMed  Google Scholar 

  • Noa M, Mas R (2005) Protective effect of policosanol on atherosclerotic plaque on aortas in monkeys. Arch Med Res 36:441–447

    Article  CAS  PubMed  Google Scholar 

  • Pamukcu B, Lip GY, Shantsila E (2011) The nuclear factor–kappa B pathway in atherosclerosis: a potential therapeutic target for atherothrombotic vascular disease. Thromb Res 128:117–123

    Article  CAS  PubMed  Google Scholar 

  • Pan CH, Tsai CH, Liu FC, Fan MJ, Sheu MJ, Hsieh WT, Wu CH (2013) Influence of different particle processing on hypocholesterolemic and antiatherogenic activities of yam (Dioscorea pseudojaponica) in cholesterol-fed rabbit model. J Sci Food Agric 93:1278–1283

    Article  CAS  PubMed  Google Scholar 

  • Panel AP (2006) Reducing residual cardiovascular risk: the relevance of raising high-density lipoprotein cholesterol in patients on cholesterol-lowering treatment. Diabetes Vasc Dis Resn 3:S1–S12

    Google Scholar 

  • Papa S, Bubici C, Zazzeroni F, Franzoso G (2009) Mechanisms of liver disease: cross-talk between the NF-kappaB and JNK pathways. Biol Chem 390:965–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirillo A, Norata GD, Catapano AL (2013) LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm 2013:152786

    Article  PubMed  PubMed Central  Google Scholar 

  • Poudel B, Lim SW, Ki HH, Nepali S, Lee YM, Kim DK (2014) Dioscin inhibits adipogenesis through the AMPK/MAPK pathway in 3T3-L1 cells and modulates fat accumulation in obese mice. Int J Mol Med 34:1401–1408

    Article  CAS  PubMed  Google Scholar 

  • Qi M, Zheng L, Qi Y et al (2015) Dioscin attenuates renal ischemia/reperfusion injury by inhibiting the TLR4/MyD88 signaling pathway via up-regulation of HSP70. Pharmacol Res 100:341–352

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Zhai Z, Liu X et al (2014) Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades. Biochem Biophys Res Commun 443:658–665

    Article  CAS  PubMed  Google Scholar 

  • Robbesyn F, Salvayre R, Negre-Salvayre A (2004) Dual role of oxidized LDL on the NF-kappaB signaling pathway. Free Radic Res 38:541–551

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez C, Alcudia JF, Martínez-González J, Raposo B, Navarro MA, Badimon L (2008) Lysyl oxidase (LOX) down-regulation by TNFalpha: a new mechanism underlying TNFalpha-induced endothelial dysfunction. Atherosclerosis 196:558–564

    Article  PubMed  Google Scholar 

  • Scott J (2004) Pathophysiology and biochemistry of cardiovascular disease. Curr Opin Genet Dev 14:271–279

    Article  CAS  PubMed  Google Scholar 

  • Shapiro MD, Fazio S (2016) From lipids to inflammation: new approaches to reducing atherosclerotic risk. Circ Res 118:732–749

    Article  CAS  PubMed  Google Scholar 

  • Shepherd J, Cobbe SM, Ford I et al; West of Scotland Coronary Prevention Study Group (2004) Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia, 1995. Atheroscler Suppl 5:91–97

  • Tao X, Wan X, Xu Y et al (2014) Dioscin attenuates hepatic ischemia-reperfusion injury in rats through inhibition of oxidative-nitrative stress, inflammation and apoptosis. Transplantation 98:604–611

    Article  CAS  PubMed  Google Scholar 

  • Tao X, Sun X, Yin L et al (2015) Dioscin ameliorates cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via HMGB-1 inhibition. Free Radic Biol Med 84:103–115

    Article  CAS  PubMed  Google Scholar 

  • van der Vorst EP, Döring Y, Weber C (2015) Chemokines and their receptors in Atherosclerosis. J Mol Med (Berl) 93:963–971

    Article  Google Scholar 

  • Wang L, Meng Q, Wang C et al (2013) Dioscin restores the activity of the anticancer agent adriamycin in multidrug-resistant human leukemia K562/adriamycin cells by down- regulating MDR1 via a mechanism involving NF-κB signaling inhibition. J Nat Prod 76:909–914

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu Y, Zhu L et al (2014) 17β-estradiol promotes cholesterol efflux from vascular smooth muscle cells through a liver X receptor α-dependent pathway. Int J Mol Med 33:550–558

    PubMed  Google Scholar 

  • White SJ, Sala-Newby GB, Newby AC (2011) Overexpression of scavenger receptor LOX-1 in endothelial cells promotes atherogenesis in the ApoE(-/-) mouse model. Cardiovasc Pathol 20:369–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong MC, de Zhang X, Wang HH (2015) Rapid emergence of atherosclerosis in Asia: a systematic review of coronary atherosclerotic heart disease epidemiology and implications for prevention and control strategies. Curr Opin Lipidol 26:257–269

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Xu H, Peng J, Wang C, Jin Y, Liu K, Sun H, Qin J (2015) Potent anti-inflammatory effect of dioscin mediated by suppression of TNF-α-induced VCAM-1, ICAM-1and EL expression via the NF-κB pathway. Biochimie 110:62–72

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Li Y, Su Q, Huang Z, Shen Y, Li W, Yu C (2015) Inhibitory effects of Mycoepoxydiene on macrophage foam cell formation and atherosclerosis in ApoE-deficient mice. Cell Biosci 5:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu S, Ogura S, Chen J, Little PJ, Moss J, Liu P (2013) LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell Mol Life Sci 70:2859–2872

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Zheng L, Xu L, Yin L, Qi Y, Xu Y, Han X, Peng J (2014a) Protective effects of dioscin against alcohol-induced liver injury. Arch Toxicol 88:739–753

    CAS  PubMed  Google Scholar 

  • Xu Y, Kong X, Zhou H, Zhang X, Liu J, Yan J, Xie H, Xie Y (2014b) oxLDL/β2GPI/anti-β2GPI complex induced macrophage differentiation to foam cell involving TLR4/NF-kappa B signal transduction pathway. Thromb Res 134:384–392

    Article  CAS  PubMed  Google Scholar 

  • Yang RX, Huang SY, Yan FF, Lu XT, Xing YF, Liu Y, Liu YF, Zhao YX (2010) Danshensu protects vascular endothelia in a rat model of hyperhomocysteinemia. Acta Pharmacol Sin 31:1395–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Wu JF, Chen WJ et al (2014) MicroRNA- 27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis 234:54–64

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Lei J, Lei H, Ruan X, Liu Q, Chen Y, Huang W (2015) MicroRNA-101 overexpression by IL-6 and TNF-α inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression. Exp Cell Res 336:33–42

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Xu L, Zheng L, Yin L, Qi Y, Han X, Xu Y, Peng J (2016) Potent effects of dioscin against gastric cancer in vitro and in vivo. Phytomedicine 23:274–282

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Pan Y, Huang Z, Jia Y, Zhao X, Chen Y, Diao J, Wan Q, Cui X (2013) Visfatin induces cholesterol accumulation in macrophages through up-regulation of scavenger receptor-A and CD36. Cell Stress Chaperones 18:643–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Anhui Provincial Natural Science Foundation under Grant (No. 1408085MH167); and Anhui Provincial science and technology key project under Grant (No. 1301042094).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui-lin Li or Jun-li Yang.

Ethics declarations

Disclosure of interest

The authors declare that they have no conflict of interest.

Research involving animals

Animal experiments were conducted in accordance with ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments for the care and use of animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., He, Ly., Shen, Gd. et al. Inhibitory effects of Dioscin on atherosclerosis and foam cell formation in hyperlipidemia rats. Inflammopharmacol 25, 633–642 (2017). https://doi.org/10.1007/s10787-017-0341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-017-0341-4

Keywords

Navigation