Skip to main content
Log in

Neuroprotective potentials of candesartan, atorvastatin and their combination against stroke induced motor dysfunction

  • Research Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Cerebral ischaemia is a leading cause of death and disability. The objective of the present investigation was to explore the neuroprotective potentials of candesartan and atorvastatin alone and their combination against the cerebral ischaemia induced behavioral, biochemical, and mitochondrial dysfunction. Male Wistar rats (200–220 g) were subjected to bilateral common carotid artery occlusion for 30 min followed by 24 h reperfusion. Candesartan (0.1 and 0.3 mg/kg) and atorvastatin (10 and 20 mg/kg) were pretreated for 7 days before animals were subjected to ischaemia reperfusion injury. Various behavioral tests (locomotor activity and rotarod performance), biochemical parameters (Malondialdehyde levels, nitrite concentration, superoxide dismutase and catalase activity, redox ratio, and GST) and mitochondrial enzyme (Complex I, II, III, and IV) dysfunctions were measured in cerebral cortex, striatum and hippocampus of the ischaemic brain. Seven days candesartan (0.1 and 0.3 mg/kg) or atorvastatin (10 and 20 mg/kg) pretreatment significantly attenuated neurobehavioral alterations, oxidative damage and restored mitochondrial enzyme dysfunction as compared to control (I/R) group. Further, combined treatment of candesartan (0.1 mg/kg) and atorvastatin (10 mg/kg) significantly potentiated their protective effect which was significant as compared to their effect alone. Present study suggests the protective effect of candesartan and atorvastatin and their combination against ischaemia reperfusion induced behavioral and biochemical alterations in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe T, Takagi N, Nakano M, Takeo S (2004) The effects of monobromobimane on neuronal cell death in the hippocampus after transient global cerebral ischemia in rats. Neurosci Lett 357(3):227–231

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal A, Gaur V, Kumar A (2010) Nitric oxide mechanism in the protective effect of naringin against post-stroke depression (PSD) in mice. Life Sci 86(1):928–935

    Article  PubMed  CAS  Google Scholar 

  • Awad AS (2010) Effect of Combined Treatment With Curcumin and Candesartan on Ischemic Brain Damage in Mice. J Stroke Cerebrovasc Dis (in press)

  • Baker K, Marcus CB, Huffman K, Kruk H, Malfroy B, Doctrow SR (1998) Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. J Pharmacol Exp Ther 284(1):215–221

    PubMed  CAS  Google Scholar 

  • Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73(3):1127–1137

    Article  PubMed  CAS  Google Scholar 

  • Bland BH, Vanderwolf CH (1972) Diencephalic and hippocampal mechanisms of motor activity in the rat: effects of posterior hypothalamic stimulation on behavior and hippocampal slow wave activity. Brain Res 43(1):67–88

    Article  PubMed  CAS  Google Scholar 

  • Butcher SP, Bullock R, Graham DI, McCulloch J (1990) Correlation between amino acid release and neuropathologic outcome in rat brain following middle cerebral artery occlusion. Stroke 21(12):1727–1733

    Article  PubMed  CAS  Google Scholar 

  • Carloni S, Mazzoni E, Cimino M, De Simoni MG, Perego C, Scopa C, Balduini W (2006) Simvastatin reduces caspase-3 activation and inflammatory markers induced by hypoxia-ischemia in the newborn rat. Neurobiol Dis 21(1):119–126

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary G, Sharma U, Jagannathan NR, Gupta YK (2003) Evaluation of Withania somnifera in a middle cerebral artery occlusion model of stroke in rats. Clin Exp Pharmacol Physiol 30(5–6):399–404

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Zhang X, Yang R, Wang L, Liu L, Li M, Du W (2010) Neuroprotection of early and short-time applying atorvastatin in the acute phase of cerebral ischemia: down-regulated 12/15-LOX, p38MAPK and cPLA2 expression, ameliorated BBB permeability. Brain Res 1325:164–173

    Article  PubMed  CAS  Google Scholar 

  • Dai WJ, Funk A, Herdegen T, Unger T, Culman J (1999) Blockade of central angiotensin AT(1) receptors improves neurological outcome and reduces expression of AP-1 transcription factors after focal brain ischemia in rats. Stroke 30(11):2391–2398 discussion 2398-2399

    Article  PubMed  CAS  Google Scholar 

  • Dobkin BH (1991) The rehabilitation of elderly stroke patients. Clin Geriatr Med 7(3):507–523

    PubMed  CAS  Google Scholar 

  • Engelhorn T, Goerike S, Doerfler A, Okorn C, Forsting M, Heusch G, Schulz R (2004) The angiotensin II type 1-receptor blocker candesartan increases cerebral blood flow, reduces infarct size, and improves neurologic outcome after transient cerebral ischemia in rats. J Cereb Blood Flow Metab 24(4):467–474

    Article  PubMed  Google Scholar 

  • Ferrara A, El Bejaoui S, Seyen S, Tirelli E, Plumier JC (2009) The usefulness of operant conditioning procedures to assess long-lasting deficits following transient focal ischemia in mice. Behav Brain Res 205(2):525–534

    Article  PubMed  Google Scholar 

  • Gaur V, Kumar A (2010a) Behavioral, biochemical and cellular correlates in the protective effect of sertraline against transient global ischemia induced behavioral despair: Possible involvement of nitric oxide-cyclic guanosine monophosphate study pathway. Brain Res Bull 82(1):57–64

    Article  PubMed  CAS  Google Scholar 

  • Gaur V, Kumar A (2010b) Possible involvement of l-arginine-nitric oxide signaling pathway in protective effect of hesperidin against ischemic reperfusion cerebral injury induced memory dysfunction. Pharmacol Rep 62(4):635–648

    PubMed  CAS  Google Scholar 

  • Gaur V, Kumar A (2010c) Protective effect of desipramine, venlafaxine and trazodone against experimental animal model of transient global ischemia: possible involvement of NO-cGMP pathway. Brain Res 1353:204–212

    Google Scholar 

  • Gaur V, Aggarwal A, Kumar A (2009) Protective effect of naringin against ischemic reperfusion cerebral injury: possible neurobehavioral, biochemical and cellular alterations in rat brain. Eur J Pharmacol 616(1–3):147–154

    Article  PubMed  CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    PubMed  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  PubMed  CAS  Google Scholar 

  • Groth W, Blume A, Gohlke P, Unger T, Culman J (2003) Chronic pretreatment with candesartan improves recovery from focal cerebral ischaemia in rats. J Hypertens 21(11):2175–2182

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59(5):1609–1623

    Article  PubMed  CAS  Google Scholar 

  • Hong H, Zeng JS, Kreulen DL, Kaufman DI, Chen AF (2006) Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol 291(5):H2210–H2215

    Article  PubMed  CAS  Google Scholar 

  • Hosomi N, Mizushige K, Kitadai M, Ohyama H, Ichihara SI, Takahashi T, Matsuo H (1999) Induced hypertension treatment to improve cerebral ischemic injury after transient forebrain ischemia. Brain Res 835(2):188–196

    Article  PubMed  CAS  Google Scholar 

  • Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, Utsumi H, Hamasaki N, Takeshita A (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88(5):529–535

    PubMed  CAS  Google Scholar 

  • Jenkins LW, Povlishock JT, Lewelt W, Miller JD, Becker DP (1981) The role of postischemic recirculation in the development of ischemic neuronal injury following complete cerebral ischemia. Acta Neuropathol 55(3):205–220

    Article  PubMed  CAS  Google Scholar 

  • Jingtao J, Sato S, Yamanaka N (1999) Changes in cerebral blood flow and blood brain barrier in the gerbil hippocampal CA1 region following repeated brief cerebral ischemia. Med Electron Microsc 32(3):175–183

    Article  PubMed  Google Scholar 

  • Karki K, Knight RA, Han Y, Yang D, Zhang J, Ledbetter KA, Chopp M, Seyfried DM (2009) Simvastatin and atorvastatin improve neurological outcome after experimental intracerebral hemorrhage. Stroke 40(10):3384–3389

    Article  PubMed  CAS  Google Scholar 

  • King TE (1967) Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. Method Enzymol 10:322–331

    Article  CAS  Google Scholar 

  • King TE, Howard RL (1967) Preparation and properties of soluble NADH dehydrogenase from cardiac muscle. Method Enzymol 10:275–294

    Article  CAS  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186(1):189–195

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni SK (1999) Handbook of experimental pharmacology. Vallabh Prakashan, Delhi, pp 117–119

    Google Scholar 

  • Kumar A, Garg R, Gaur V, Kumar P (2010) Venlafaxine involves nitric oxide modulatory mechanism in experimental model of chronic behavior despair in mice. Brain Res 1311:73–80

    Article  PubMed  CAS  Google Scholar 

  • Landau W (2009) Effect of atorvastatin in elderly patients with a recent stroke or transient ischemic attack. Neurology 73(10):817 author reply 818

    Article  PubMed  Google Scholar 

  • Lee ST, Chu K, Park JE, Hong NH, Im WS, Kang L, Han Z, Jung KH, Kim MW, Kim M (2008) Atorvastatin attenuates mitochondrial toxin-induced striatal degeneration, with decreasing iNOS/c-Jun levels and activating ERK/Akt pathways. J Neurochem 104(5):1190–1200

    Article  PubMed  CAS  Google Scholar 

  • Lenaz G (1998) Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1366(1–2):53–67

    PubMed  CAS  Google Scholar 

  • Lewen A, Matz P, Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17(10):871–890

    Article  PubMed  CAS  Google Scholar 

  • Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45(1):89–118

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Peterson DA, Kimura H, Schubert D (1997) Mechanism of cellular 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69(2):581–593

    Article  PubMed  CAS  Google Scholar 

  • Luck H (1971) Catalase, methods of enzymatic analysis. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 885–893

    Google Scholar 

  • Miltner WH, Bauder H, Sommer M, Dettmers C, Taub E (1999) Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication. Stroke 30(3):586–592

    Article  PubMed  CAS  Google Scholar 

  • Neumar RW (2000) Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med 36(5):483–506

    PubMed  CAS  Google Scholar 

  • Nishimura Y, Ito T, Hoe K, Saavedra JM (2000) Chronic peripheral administration of the angiotensin II AT(1) receptor antagonist candesartan blocks brain AT(1) receptors. Brain Res 871(1):29–38

    Article  PubMed  CAS  Google Scholar 

  • Patassini S, Giampa C, Martorana A, Bernardi G, Fusco FR (2008) Effects of simvastatin on neuroprotection and modulation of Bcl-2 and BAX in the rat quinolinic acid model of Huntington’s disease. Neurosci Lett 448(1):166–169

    Article  PubMed  CAS  Google Scholar 

  • Racay P, Chomova M, Tatarkova Z, Kaplan P, Hatok J, Dobrota D (2009) Ischemia-induced mitochondrial apoptosis is significantly attenuated by ischemic preconditioning. Cell Mol Neurobiol 29(6–7):901–908

    Article  PubMed  CAS  Google Scholar 

  • Saad MA, Abbas AM, Boshra V, Elkhateeb M, El Aal IA (2010) Effect of angiotensin II type 1 receptor blocker, candesartan, and beta 1 adrenoceptor blocker, atenolol, on brain damage in ischemic stroke. Acta Physiol Hung 97(2):159–171

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM (1992) Brain and pituitary angiotensin. Endocr Rev 13(2):329–380

    PubMed  CAS  Google Scholar 

  • Schmerbach K, Schefe JH, Krikov M, Muller S, Villringer A, Kintscher U, Unger T, Thoene-Reineke C (2008) Comparison between single and combined treatment with candesartan and pioglitazone following transient focal ischemia in rat brain. Brain Res 1208:225–233

    Article  PubMed  CAS  Google Scholar 

  • Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A (1967) An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol 32(2):415–438

    Article  PubMed  CAS  Google Scholar 

  • Tanahashi N, Fukuuchi Y (2002) Treatment of acute ischemic stroke: recent progress. Intern Med 41(5):337–344

    Article  PubMed  Google Scholar 

  • Tuor UI, Kondysar MH, Harding RK (1988) Effect of angiotensin II and peptide YY on cerebral and circumventricular blood flow. Peptides 9(1):141–149

    Article  PubMed  CAS  Google Scholar 

  • van der Most PJ, Dolga AM, Nijholt IM, Luiten PG, Eisel UL (2009) Statins: mechanisms of neuroprotection. Prog Neurobiol 88(1):64–75

    Article  PubMed  Google Scholar 

  • Vaughan CJ, Delanty N (1999) Neuroprotective properties of statins in cerebral ischemia and stroke. Stroke 30(9):1969–1973

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Zhang X, Liu L, Yang R, Cui L, Li M (2010) Atorvastatin protects rat brains against permanent focal ischemia and downregulates HMGB1, HMGB1 receptors (RAGE and TLR4), NF-kappaB expression. Neurosci Lett 471(3):152–156

    Article  PubMed  CAS  Google Scholar 

  • Wills ED (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99(3):667–676

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Shioda N, Han F, Moriguchi S, Nakajima A, Yokosuka A, Mimaki Y, Sashida Y, Yamakuni T, Ohizumi Y, Fukunaga K (2009) Nobiletin improves brain ischemia-induced learning and memory deficits through stimulation of CaMKII and CREB phosphorylation. Brain Res 1295:218–229

    Article  PubMed  CAS  Google Scholar 

  • Yanpallewar S, Rai S, Kumar M, Chauhan S, Acharya SB (2005) Neuroprotective effect of Azadirachta indica on cerebral post-ischemic reperfusion and hypoperfusion in rats. Life Sci 76(12):1325–1338

    Article  PubMed  CAS  Google Scholar 

  • Yrjanheikki J, Koistinaho J, Kettunen M, Kauppinen RA, Appel K, Hull M, Fiebich BL (2005) Long-term protective effect of atorvastatin in permanent focal cerebral ischemia. Brain Res 1052(2):174–179

    Article  PubMed  Google Scholar 

  • Zhou J, Pavel J, Macova M, Yu ZX, Imboden H, Ge L, Nishioku T, Dou J, Delgiacco E, Saavedra JM (2006) AT1 receptor blockade regulates the local angiotensin II system in cerebral microvessels from spontaneously hypertensive rats. Stroke 37(5):1271–1276

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledged the financial support of University Grant Commission (U.G.C.), New Delhi for carrying out this work. The Research Fellowship in Science for Meritorious Student (Vaibhav Gaur) of the University Grant Commission (U.G.C.), New Delhi, is gratefully acknowledged. Authors kindly acknowledge CIREX Pharmaceuticals Ltd., Hyderabad for providing the gift sample of drugs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaur, V., Kumar, A. Neuroprotective potentials of candesartan, atorvastatin and their combination against stroke induced motor dysfunction. Inflammopharmacol 19, 205–214 (2011). https://doi.org/10.1007/s10787-010-0068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-010-0068-y

Keywords

Navigation