Skip to main content
Log in

Stress State of Non-Thin Elliptical Cylindrical Shells Under a Local Longitudinal Load

  • Published:
International Applied Mechanics Aims and scope

The spatial problem of the stress state of non-thin elliptical cylindrical shells is solved using the analytical methods of separation of variables, approximation of functions by discrete Fourier series, and the numerical method of discrete orthogonalization. The shells are made of isotropic and orthotropic materials and acted upon by a local longitudinal load. The results obtained are presented in the form of plots and tables of fields of displacements and stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. K. Ashkenazi, I. B. Gol’fman, L. P. Rozhkov, and N. P. Sidorov, Reinforced-glass Components in Ship Engineering [in Russian], Sudostroenie, Leningrad (1974).

  2. G. G. Vlaikov, A. Ya. Grigorenko, and S. N. Shevchenko, Some Elasticity Problems for Anisotropic Cylinders with Noncircular Cross-Section [in Russian], NAN Ukrainy, Inst. Mekh. im. S. P. Timoshenko, Kyiv (2001).

  3. S. K. Godunov, “Numerical solution of boundary-value problems for systems of linear ordinary differential equations,” Usp. Mat. Nauk, 16, No. 3, 171–174 (1961).

    MathSciNet  Google Scholar 

  4. Ya. M. Grygorenko, O. I. Bespalova, and N. P. Boreiko, “Vibrations of conjugate shell systems in the field of combined loads,” Mat. Metody Fiz.- Mekh. Polya, 63, No. 3, 5–18 (2020).

  5. Ya. M. Grigorenro, A. T. Vasilenko, I. G. Emel’yanov, et. al., Statics of Structural Elements, Vol. 8 of the twelve-volume series Composite Mechanics [in Russian], “A.S.K,” Kyiv (1999).

  6. Ya. M. Grygorenko and L. S. Rozhok, “Application of discrete Fourier series to solving boundary-value static problems for elastic non-canonical bodies,” Mat. Metody Fiz.- Mekh. Polya, 48, No. 2, 79–100 (2005).

  7. S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body [in Russian], Nauka, Moscow (1977).

  8. V. P. Revenko, “Solutions of three-dimensional elasticity problems for orthotropic bodies,” Mat. Metody Fiz.- Mekh. Polya, 63, No. 3, 78–84 (2020).

  9. L. S. Rozhok, “Studying the influence of local loading on the stress state of corrugated hollow cylinders,” Dop. NAN Ukrainy, No. 7, 56–59 (2006).

  10. L. S. Rozhok, “Equilibrium of corrugated hollow elliptical cylinders under local loading,” Dop. NAN Ukrainy, No. 3, 90–94 (2009).

  11. S. P. Timoshenko, Course of the Elasticity Theory [in Russian], Naukova Dumka, Kyiv (1972).

  12. G. M. Fikhtengol’ts, Course of Differential and Integral Calculus [in Russian], Vol. 3, Nauka, Moscow (1949).

  13. E. I. Bespalova and N. P. Boreiko, “Vibrations of compound shell systems under subcritical loads. Models,” Int. Appl. Mech., 56, No. 4, 415–423 (2020).

    Article  Google Scholar 

  14. A. Ya. Grigorenko, V. A. Malanchuk, G. V. Sorochenko, et al., “Application of the inhomogeneous elasticity theory to the description of the mechanical state of a single-rooted tooth,” Int. Appl. Mech., 57, No. 3, 249–262 (2021).

    Article  MathSciNet  Google Scholar 

  15. Ya. M. Grigorenko and L. S. Rozhok, “Influence of orthotropy parameters on the stress state of hollow cylinders with elliptic cross-section,” Int. Appl. Mech., 43, No. 12, 1372–1379 (2007).

    Article  Google Scholar 

  16. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York (1961).

    MATH  Google Scholar 

  17. A. V. Marchuk, S. V. Reneiskaya, and O. N. Leshchuk, “Three-dimensional analysis of the free vibrations of layered composite plates based on the semianalytic finite-element method,” Int. Appl. Mech., 56, No. 4, 481–497 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. F. Meish, Y. A. Meish, and V. F. Kornienko, “Dynamics of three-layer shells of different geometry with piecewise-homogeneous core under distributed loads,” Int. Appl. Mech., 57, No. 6, 659–668 (2021).

    Article  MathSciNet  Google Scholar 

  19. O. Ozguk, “Nonlinear buckling simulations of stiffened panel exposed to combinations of transverse compression, shear force and lateral pressure loadings,” J. Inst. Eng. India, Ser. C, 102, 397–408 (2021).

  20. N. P. Semenyuk and N. B. Zhukova, “Stablity of a sandwich cylindrical shell with core subject to external pressure and pressure in the inner cylinder,” Int. Appl. Mech., 56, No. 1, 52–66 (2020).

    Article  MATH  Google Scholar 

  21. E. A. Storozhuk, “Stress–strain state and stability of a flexible circular cylindrical shell with transverse shear strains,” Int. Appl. Mech., 57, No. 5, 554–567 (2021).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ya. Grygorenko.

Additional information

Translated from Prykladna Mekhanika, Vol. 59, No. 2, pp. 28–40, March–April 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grygorenko, O.Y., Rozhok, L.S. Stress State of Non-Thin Elliptical Cylindrical Shells Under a Local Longitudinal Load. Int Appl Mech 59, 153–165 (2023). https://doi.org/10.1007/s10778-023-01209-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-023-01209-x

Keywords

Navigation