Skip to main content
Log in

Influence of Orthotropy on the Stress–Strain State of Quadrangular Plates of Different Shapes

  • Published:
International Applied Mechanics Aims and scope

A numerical-analytical approach based on the spline-collocation and discrete-orthogonalization methods is proposed. The approach makes it possible to analyze the static stress–strain state of orthotropic complex-shaped plates. For the plate shape to be taken into account, the coordinate transformation, which reduces the initial domain to a unit square, is applied. Using, as an example, a plate of trapezoidal shape, it is shown how the material properties affect the stress–strain state. It is also studied how the mutual orientation of the plate edges and orthotropy axes influence the distribution of the displacement fields for plates made of materials with essentially dissimilar elastic properties. The dependence of the convergence of the numerical results on mechanical and geometrical parameters of the plates is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Kurpa, R-Functions Method for Solving Linear Problems of Bending and Vibration of Plates and Shallow Shells [in Russian], “KhPI” NTY, Khar’kov (2009).

    Google Scholar 

  2. N. Alam and N. T. Asnani, “Vibration and damping analysis of fibre reinforced composite material plates,” J. Comp. Mater., 20, No. 1, 2–18 (1986).

    Article  Google Scholar 

  3. R. S. Alwar and N. Ramachandra Rao, “Nonlinear analysis of orthotropic skew plates,” AIAA J., 11, No. 4, 495–498 (1973).

    Article  ADS  MATH  Google Scholar 

  4. E. I. Bespalova and G. P. Urusova, “Solving the torsion problems for an anisotropic prism by the advanced Kantorovich–Vlasov method,” Int. Appl. Mech., 46, No. 2, 149–158 (2010).

    Article  ADS  MATH  Google Scholar 

  5. V. Birman, Plates Structures, Springer, New York (2011).

    Book  Google Scholar 

  6. D. N. Buragohain and S. C. Patodi, “Large deflection analysis of skew plates by lumped triangular element formulation,” Comp. Struct., 9, 183–189 (1978).

    Article  MATH  Google Scholar 

  7. S. K. Godunov, “Numerical solution of boundary-value problems for systems of linear ordinary differential equations,” Usp. Mat. Nauk, 16, No. 3, 171–174 (1961).

    MathSciNet  Google Scholar 

  8. A. Ya. Grigorenko, W. H. Muller, Ya. M. Grigorenko, and G. G. Vlaikov, General Theory and Applications of Classical Theory, Vol. 1 of the three-volume series Recent Developments in Anisotropic Heterogeneous Shell Theory, Springer, Berlin (2016).

  9. A. Ya. Grigorenko and S. A. Pankrat’ev, “Stress–strain state of complex-shaped orthotropic plates under variable load,” Int. Appl. Mech., 54, No. 4, 411–417 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Ya. Grigorenko, S. A. Pankrat’ev, and S. N. Yaremchenko, “Analysis of the stress–strain state of complex-shaped plates,” Int. Appl. Mech., 54, No. 6, 659–701 (2018).

    Article  MathSciNet  Google Scholar 

  11. A. Ya. Grigorenko, S. A. Pankrat’ev, and S. N. Yaremchenko, “Numerical analysis of stress–strain state of orthotropic plates in the form of arbitrary convex quadrangle,” in: Proc. 5th Int. Conf. on Nonlinear Dynamics, Charkov (2016), pp. 287–293.

  12. A. Ya. Grigorenko, S. A. Pankrat’ev, and S. N. Yaremchenko, “Solution of stress–strain problems for complex-shaped plates in a refined formulation,” Int. Appl. Mech., 53, No. 3, 326–333 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  13. Ya. M. Grigorenko and A. Ya, Grigorenko, “Static and dynamic problems for anisotropic inhomogeneous shells with variable parameters and their numerical solution (review),” Int. Appl. Mech., 49, No. 2, 123–193 (2013).

  14. Ya. M. Grigorenko, A. Ya. Grigorenko, and T. L. Efimova, “Spline-based investigation of natural vibrations of orthotropic rectangular plates of variable thickness within classical and refined theories,” J. Mech. Struct., 3, No. 5, 929–952 (2008).

    Article  Google Scholar 

  15. Ya. M. Grigorenko, N. N. Kryukov, and N. S. Yakovenko, “Using spline-functions to solve boundary-value problems for laminated orthotropic trapezoidal plates of variable thickness,” Int. Appl. Mech., 41, No. 4, 413–420 (2005).

    Article  ADS  Google Scholar 

  16. N. N. Kryukov, “Design of oblique and trapezoidal plates using spline functions,” Int. Appl. Mech., 33, No. 5, 3–27 (1997).

    Article  Google Scholar 

  17. W. Y. Li, Y. K. Cheung, F. Asce, and I. G. Tham, “Spline finite strip analysis of general plates,” J. Eng. Mech., 112, 43–54 (1986).

    Article  Google Scholar 

  18. P. Malekzadeh and A. R. Fiouz, “Large deformation snalysis of orthotropic skew plates with nonlinear rotationally restrained edges using DQM,” Comp. Struct., 80, No. 2, 196–206 (2007).

    Article  Google Scholar 

  19. P. Malekzadeh and G. Karami, “Differential quadrature nonlinear analysis of skew composite plates based on FSDT,” Eng. Struct., 28, 1307–1318 (2006).

    Article  Google Scholar 

  20. R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of isotropic elastic plates,” ASME, J. Appl. Mech., 18, 31–38 (1951).

    MATH  Google Scholar 

  21. P. Mohajerani, “The thick orthotropic plates analysis methods,” Part I: A Review, IOSR J. Mech. Civil Eng., 12, No. 2, Ver. III, 69–77 (2015).

  22. A. R. Shahidi, M. Mahzoon, M. M. Saadatpour, and M. Azhari, “Nonlinear static analysis of arbitrary quadrilateral plates in very large deflections,” Communications in Nonlinear Science and Numerical Simulation, 12, 832–848 (2007).

    Article  ADS  MATH  Google Scholar 

  23. A. H. Sheikh and M. Mukhopadhyay, “Geometric nonlinear analysis of stiffened plates by the spline finite strip method,” Comp. Struct., 76, 765–785 (2000).

    Article  Google Scholar 

  24. I. Shifrin, O. Rabinovich, and M. Eisenberger, “A semi-analytical approach for the geometrically nonlinear analysis of trapezoidal plates,” Int. J. Mech. Sci., 52, 1588–1596 (2010).

    Article  Google Scholar 

  25. A. V. Singh and Y. Elaghabash, “On finite displacement analysis of quadrangular plates,” Int. J. Non-Linear Mech., 38, 1149–1162 (2003).

    Article  MATH  Google Scholar 

  26. R. S. Shrivasan and S. V. Ramachandran, “Large deflection of clamped skew plates,” Comp. Meth. Appl. Mech. Eng., 7, 219–233 (1976).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Pankrat’ev.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 55, No. 2, pp. 101–112, March–April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorenko, A.Y., Pankrat’ev, S.A. & Yaremchenko, S.N. Influence of Orthotropy on the Stress–Strain State of Quadrangular Plates of Different Shapes. Int Appl Mech 55, 199–210 (2019). https://doi.org/10.1007/s10778-019-00950-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-019-00950-6

Keywords

Navigation