Skip to main content
Log in

Phase-Frequency Characteristics of the Longitudinal and Transverse Vibrations of Planar Piezoceramic Transformers

  • Published:
International Applied Mechanics Aims and scope

Experimental data on longitudinal and transverse vibrations of thin lamellar piezotransformer are analyzed. It is established that the voltage drops and instantaneous powers are very sensitive to the loading conditions, while the admittances, impedances, and phase shifts do not depend on them. If the current is set constant, the instantaneous power decreases as the resonance is approached and increases as the antiresonance is approached. If the voltage is set constant, the instantaneous power increases as the resonance is approached and decreases as the antiresonance is approached

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Berlinkur, D. Kerran, and G. Jaffe, “Piezoceramic electric and piezomagnetic materials and their application in transducers,” in: W. P. Mason (ed.), Physical Acoustics, Principles and Methods, Vol. 1, Part A, Methods and Devices, Academic Press, New York–London (1964).

    Google Scholar 

  2. I. A. Glozman, Piezoceramics [in Russian], Energiya, Moscow (1972).

    Google Scholar 

  3. A. A. Erofeev, G. A. Danov, and V. N. Frolov, Piezoceramic Transformers and Their Application in Radio Electronics [in Russian], Radio i Svyaz’, Moscow (1988).

    Google Scholar 

  4. V. L. Karlash, “Transformation ratio and vibration modes of a planar Rosen-type piezoelectric transformer,” Elektrichestvo, No. 1, 51–55 (2002).

    Google Scholar 

  5. V. L. Karlash, “Methods for determining the coupling coefficients for and energy loss in piezoceramic vibrators,” Akust. Visn., 15, No. 4, 24–38 (2012).

    Google Scholar 

  6. V. V. Lavrinenko, Piezoelectric Transformers [in Russian], Energiya, Moscow (1975).

    Google Scholar 

  7. E. G. Smazhevskaya, R. F. Zhuchina, and N. A. Podol’ner, “Influence of the main parameters of a piezoceramic material on the characteristics of models of resonant piezoelectric transformers,” in: Radiators and Receivers of Ultrasonic Oscillations [in Russian], Part 22, LDNTP (1966), pp. 22–35.

  8. N. A. Shul’ga and A. M. Bolkisev, Vibrations of Piezoelectric Bodies [in Russian], Naukova Dumka, Kyiv (1990).

    MATH  Google Scholar 

  9. M. O. Shul’ga and V. L. Karlash, Resonant Electromechanical Vibrations of Piezoelectric Plates [in Ukrainian], Naukova Dumka, Kyiv (2008).

    Google Scholar 

  10. M. O. Shul’ga and V. L. Karlash, “Amplitude–phase characteristics of radial vibrations of a thin piezoceramic disk at resonances,” Dop. NAN Ukrainy, No. 9, 80–86 (2013).

    MATH  Google Scholar 

  11. Y. Fuda, K. Kumasaka, M. Katsumo, H. Sato, and Y. Ino, “Piezoelectric transformer for cold cathode fluorescent lamp inverter,” Jpn. J. Appl. Phys., 1, 36, No. 5B, 3050–3052 (1997).

  12. S. Hirose, N. Magami, and S. Takanashi, “Piezoelectric ceramic transformer using piezoelectric lateral effect on input and on output,” Jpn. J. Appl. Phys., 35, 3038–3041 (1996).

    Article  ADS  Google Scholar 

  13. R. Holland, “Representation of dielectric, elastic and piezoelectric losses by complex coefficients,” IEEE Trans. SU, SU–14, 18–20 (1967).

    Google Scholar 

  14. “IRE Standards on Piezoelectric Crystals: Measurements of Piezoelectric Ceramics. 1961,” Proñ. IRE, 49, 1161–1169 (1961).

  15. V. L. Karlash, “Frequency properties of a planar piezoelectric transformer of longitudinal-transverse type,” Int. Appl. Mech., 36, No. 8, 1103–1111 (2000).

    Article  ADS  MATH  Google Scholar 

  16. V. L. Karlash, “The stress state of a rectangular piezoceramic plate with transverse–longitudinal polarization,” Int. Appl. Mech., 37, No. 3, 386–392 (2001).

    Article  ADS  MATH  Google Scholar 

  17. V. L. Karlash, “Electroelastic characteristics of a piezoelectric transformer plate,” Int. Appl. Mech., 39, No. 7, 870–874 (2003).

    Article  ADS  Google Scholar 

  18. V. L. Karlash, “Electroelastic vibrations and transformation ratio of a planar piezoceramic transformer,” J. Sound Vib., 277, 353–367 (2004).

    Article  ADS  Google Scholar 

  19. V. L. Karlash, “Longitudinal and lateral vibrations of a planar piezoceramic transformer,” Jpn. J. Appl. Phys., 44, No. 4A, 1852–1856 (2005).

    Article  ADS  Google Scholar 

  20. V. L. Karlash, “Longitudinal and lateral vibrations of a plate piezoceramic transformer,” U. J. Phys., 51, No. 10, 985–991 (2006).

    Google Scholar 

  21. V. L. Karlash, “Admittance-frequency response of a thin piezoceramic half-disk,” Int. Appl. Mech., 45, No. 10, 1120–1126 (2009).

    Article  ADS  Google Scholar 

  22. V. L. Karlash, “Forced electromechanical vibrations of rectangular piezoceramic bars with sectionalized electrodes,” Int. Appl. Mech., 49, No. 3, 360–368 (2013).

    Article  ADS  Google Scholar 

  23. V. L. Karlash, “Energy losses in piezoceramic resonators and its influence on vibrations’ characteristics,” Electronics and Communication, 19, No. 2 (79), 82–94 (2014).

  24. V. L. Karlash, “Modeling of energy-loss piezoceramic resonators by electric equivalent networks with passive elements,” Mathematical Modelling and Computing, 1, No. 2, 163–177 (2014).

    Google Scholar 

  25. V. G. Karnaukhov, V. I. Kozlov, A. V. Zavgorodnii, and I. N. Umrykhin, “Forced resonant vibrations and self-heating of solids of revolution made of a viscoelastic piezoelectric material,” Int. App. Mech., 51, No. 6, 614–622 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. H. W. Katz (ed.), Solid State Magnetic and Piezoelectric Devices, Willey, New York (1959).

    Google Scholar 

  27. G. Liu, S. Zhang, W. Jiang, and W. Cao, “Losses in ferroelectric materials,” Mater. Sci. Eng., 89, 1–48 (2015).

    Article  Google Scholar 

  28. A. V. Mezheritsky, “Quality factor of piezoceramics,” Ferroelectrics, 266, 277–304 (2002).

    Article  Google Scholar 

  29. A. V. Mezheritsky, “Elastic, dielectric and piezoelectric losses in piezoceramics; how it works all together,” IEEE Trans. UFFC, 51, No. 6, 695–797 (2004).

    Google Scholar 

  30. E. C. Munk, “The equivalent electrical circuit for radial modes of a piezoelectric ceramic disk with concentric electrodes,” Phillips Res. Rep., 20, 170–189 (1965).

    Google Scholar 

  31. N. A. Shulga and V. L. Karlash, “Measuring the amplitudes and phase of vibrations of piezoceramic structural elements,” Int. App. Mech., 51, No. 3, 350–359 (2015).

    Article  Google Scholar 

  32. K. Uchino, J. H. Zheng, Y. H. Chen, et al., “Loss mechanisms and high power piezoelectrics,” J. Mat. Sci., 41, 217–228 (2006).

    Article  ADS  Google Scholar 

  33. K. Uchino, Yu. Zhuang, and S. O. Ural, “Loss determination methodology for a piezoelectric ceramic: new phenomenological theory and experimental proposals,” J. Adv. Dielectric., 1, No. 1, 17–31 (2011).

    Article  Google Scholar 

  34. S. O. Ural, S. Tuncdemir, Yu. Zhuang, and K. Uchino, “Development of a high power piezoelectric characterization system and its application for resonance/antiresonance mode characterization,” Jpn. J. Appl. Phys., 48, 056509 (2009).

    Article  ADS  Google Scholar 

  35. C. A. Rosen, US Patent 439 992 1954, June 29 (1954).

  36. M. Yamamoto, Y. Sasaki, A. Ochi, et al., “Step-down piezoelectric transformer for AC-DC converters,” Jpn. J. Appl. Phys., 1.40, No. 5B, 3637–3642 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Karlash.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 53, No. 3, pp. 128–136, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlash, V.L. Phase-Frequency Characteristics of the Longitudinal and Transverse Vibrations of Planar Piezoceramic Transformers. Int Appl Mech 53, 349–355 (2017). https://doi.org/10.1007/s10778-017-0817-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-017-0817-3

Keywords

Navigation