Skip to main content
Log in

An Approximate Method for Analysis of Solitary Waves in Nonlinear Elastic Materials

  • Published:
International Applied Mechanics Aims and scope

Two types of solitary elastic waves are considered: a longitudinal plane displacement wave (longitudinal displacements along the abscissa axis of a Cartesian coordinate system) and a radial cylindrical displacement wave (displacements in the radial direction of a cylindrical coordinate system). The basic innovation is the use of nonlinear wave equations similar in form to describe these waves and the use of the same approximate method to analyze these equations. The distortion of the wave profile described by Whittaker (plane wave) or Macdonald (cylindrical wave) functions is described theoretically

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Babich and A. P. Kiselev, Elastic Waves: High-Frequency Theory [in Russian], BKhV-Peterburg, St-Petersburg (2014).

  2. J. J. Rushchitsky, “On constraints for displacement gradients in elastic materials,” Int. Appl. Mech., 51, No. 2, 119–132 (2016).

    Article  MathSciNet  Google Scholar 

  3. J. J. Rushchitsky and S. I. Tsurpal, Waves in Microstructural Materials [in Ukrainian], Inst. Mekh. S. P. Timoshenka, Kyiv (1998).

  4. M. Alonso and N. Reguera, “Numerical detection and generation of solitary waves for a nonlinear wave equation,” Wave Motion, 56, 137–146 (2015).

    Article  MathSciNet  Google Scholar 

  5. A. Berezovski, G. A. Maugin, and J. Engelbrecht, Numerical Simulation of Waves and Fronts in Inhomogeneous Solids, World Scientific, Singapore–London (2008).

  6. V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Spatial problems of the fracture of materials loaded along cracks (review),” Int. Appl. Mech., 51, No. 5, 489–560 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. C. Cattani and J. Rushchitsky, Wavelet and Wave Analysis as applied to Materials with Micro and Nanostructure, World Scientific, Singapore–London (2007).

  8. M. Destrade and G. Saccomandi, “Finite amplitude elastic waves propagating in compressible solids,” Phys. Rev. E, 72, No. 1, 016620 (2005).

  9. A. N. Guz, “Ultrasonic nondestructive method for stress analysis of structural members and near-surface layers of materials. Focus on Ukrainian research (review),” Int. Appl. Mech., 50, No. 3, 231–252 (2014).

    Article  Google Scholar 

  10. V. I. Erofeev, Wave Processes in Solids with Microstructure, World Scientific, Singapore–London (2003).

  11. J. Janno and A. Seletski, “Reconstruction of coefficients of higher order nonlinear wave equation by measuring solitary waves,” Wave Motion, 52, 15–25 (2015).

    Article  MathSciNet  Google Scholar 

  12. I. S. Gradstein and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York (2007).

    Google Scholar 

  13. M. F. Hamilton, Yu. A. Il’inskii, and E. A. Zabolotskaya, “Model equations for nonlinear surface waves,” J. Acoust. Soc. Am., 103, No. 5, 2925 (1998).

  14. M. I. Hussein and R. Khayehtourian, “Nonlinear elastic waves in solids: Deriving simplicity from complexity,” Bull. Amer. Phys. Soc., 60, No. 1 (2015) http://meetings.aps.org/link/BAPS.2015,MAR Q8.10.

  15. G. A. Maugin, Nonlinear Waves in Elastic Crystals, Oxford University Press, Oxford (1999).

    MATH  Google Scholar 

  16. K. Narahara, “Asymmetric solitary waves in coupled nonlinear transmissions lines,” Wave Motion, 58, 13–21 (2015).

    Article  MathSciNet  Google Scholar 

  17. A. B. Olde Daalhuis, Confluent Hypergeometric Functions. Ch. 13, Whittaker Functions. 13.14–13.26, in: F. W. J. Olver, D. W. Lozier, R. F. Bousvert, and C. W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge (2010), pp. 383–402.

  18. F. W. J. Olver and L. C. Maximon, Bessel Functions. Ch. 10, in: F. W. J. Olver, D. W. Lozier, R. F. Bousvert, and C. W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge (2010), pp. 215–286.

  19. A. V. Porubov, Amplification of Nonlinear Strain Waves in Solids, World Scientific, Singapore–London (2003).

  20. O. Richoux, B. Lombard, and J.-F. Mercier, “Generation of acoustic solitary waves in a lattice of Helmholtz resonators,” Wave Motion, 58, 85–99 (2015).

    Article  MathSciNet  Google Scholar 

  21. J. J. Rushchitsky, “Certain class of nonlinear hyperelastic waves: Classical and novel models, wave equations, wave effects,” Int. J. Appl. Math. Mech., 9, No. 12, 600–643 (2013).

    Google Scholar 

  22. J. J. Rushchitsky, Nonlinear Elastic Waves in Materials, Springer, Heidelberg (2014).

    Book  MATH  Google Scholar 

  23. J. J. Rushchitsky and I. A. Guz, “Theoretical description of a delamination mechanism in fibrous micro- and nanocomposites,” Int. Appl. Mech., 40, No. 10, 1129–1136 (2004).

    Article  Google Scholar 

  24. A. Salupere, K. Tamm, and J. Engelbrecht, “Numerical simulation of solitary deformation waves in microstructured solids,” Int. J. Non-Linear Mech., 43, 201–208 (2008).

    Article  ADS  MATH  Google Scholar 

  25. A. M. Stroisz, Nonlinear Elastic Waves for Estimation of Rock Properties, PhD Thesis, Norges Teknisk Universitet (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Rushchitsky.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 52, No. 3, pp. 83–91, May–June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rushchitsky, J.J., Yurchuk, V.N. An Approximate Method for Analysis of Solitary Waves in Nonlinear Elastic Materials. Int Appl Mech 52, 282–289 (2016). https://doi.org/10.1007/s10778-016-0751-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-016-0751-9

Keywords

Navigation