Skip to main content
Log in

Necking Near a Crack Tip in a Plate: a Plane Problem

  • Published:
International Applied Mechanics Aims and scope

The nonlinear plane problem of the tension of a plate with a crack and a neck at the crack tip is solved. The stress–strain curve is assumed piecewise-linear with a constant bulk modulus. By applying the Fourier transform and discretization, the problem is reduced to a system of nonlinear algebraic equations. The distribution of the neck depth near the crack tip and the effect of nonlinearity on the crack-tip opening displacement are studied

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Gulyaev, Metallurgy [in Russian], Metallurgiya, Moscow (1986).

  2. V. V. Panasyuk, A. E. Andreikiv, and V. Z. Parton, Basic Fracture Mechanics of Materials, Vol. 1 of the four-volume handbook Fracture Mechanics and Strength of Materials [in Russian], Naukova Dumka, Kyiv (1988).

  3. G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill, New York (1979).

    MATH  Google Scholar 

  4. G. P. Cherepanov, “Plastic rupture lines at the tip of a crack,” J. Appl. Mat. Mech., 40, No. 4, 666–674 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  5. C. G. Amar, “Delamination—a damage mode in composite structures,” Eng. Frac. Mech., 29, No. 5, 557–584 (1988).

    Article  Google Scholar 

  6. L. J. Broutman and R. H. Krock (eds.), Composite Materials, Vols. 1–8, Academic Press, New York–London (1973–1976).

  7. G. C. Sih (ed.), Elastodynamic Crack Problems, Noordhoff, Leyden (1977).

    Google Scholar 

  8. A. G. Evans and J. W. Hutchinson, “On the mechanics of delamination and spalling in compressed films,” Int. J. Solids Struct., 20, No. 5, 455–466 (1984).

    Article  Google Scholar 

  9. H. Liebowiz (ed.), Fracture. An Advance Treatise, Vols. 1–7, Academic Press, New York–London (1968–1972).

  10. A. C. Garg, “Intralaminar and interlaminar fracture in graphite/epoxy laminates,” Eng. Frac. Mech., 23, No. 4, 719–733 (1986).

    Article  Google Scholar 

  11. A. A. Griffith, “The phenomena of rupture and flow in solids,” Phil. Trans. Roy. Soc. London, Ser. A, 221, 163–198 (1920).

    Article  ADS  Google Scholar 

  12. A. N. Guz, I. A. Guz, A. V. Men’shikov, and V. A. Men’shikov, “Three-dimensional problems in the dynamic fracture mechanics of materials with interface cracks (review),” Int. Appl. Mech., 48, No. 1, 1–61 (2013).

    Article  Google Scholar 

  13. A. N. Guz, “Establishing the foundations of the mechanics of fracture of materials compressed along cracks (review),” Int. Appl. Mech., 50, No. 1, 1–57 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  14. J. W. Hutchinson, M. Mear, and J. R. Rice, “Crack paralleling at interface between dissimilar materials,” Trans. ASME, J. Appl. Mech., 54, No. 4, 828–832 (1987).

    Article  ADS  Google Scholar 

  15. G. P. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate,” J. Appl. Mech., 24, No. 4, 361–364 (1957).

    MathSciNet  Google Scholar 

  16. A. A. Kaminsky and E. E. Kurchakov, “Modeling a crack with a fracture process zone in a nonlinear elastic body,” Int. Appl. Mech., 48, No. 5, 552–562 (2012).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. L. A. Kipnis and T. V. Polishchuk, “Analysis of the plastic zone at the corner point of interface,” Int. Appl. Mech., 45, No. 2, 159–168 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  18. L. P. Khoroshun, “Integral relations in the vicinity of a crack tip,” Int. Appl. Mech., 31, No. 8, 601–607 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  19. L. P. Khoroshun, “On the correctness of energy criterion in fracture mechanics,” Int. Appl. Mech., 31, No. 10, 799–805 (1995).

    Article  ADS  MATH  Google Scholar 

  20. L. P. Khoroshun, “Discretization of the plane problem for a cracked body with nonlinear stress–strain diagram under tension,” Int. Appl. Mech., 46, No. 11, 1238–1252 (2010).

    Article  Google Scholar 

  21. L. P. Khoroshun and O. I. Levchuk, “Distribution around cracks in linear hardening materials subject to tension: Plane problem,” Int. Appl. Mech., 50, No. 2, 128–140 (2014).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. E. O. Orowan, “Fundamentals of brittle behavior of metals,” in: Fatigue and Fracture of Metals, Wiley, New York (1950), pp. 139–167.

  23. N. Perez, Fracture Mechanics, Kluwer Academic Publ., Boston (2004).

    Google Scholar 

  24. J. N. Sneddon and D. S. Berry, The Classical Theory of Elasticity, Springer-Verlag, Berlin (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Khoroshun.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 51, No. 3, pp. 95–112, May–June 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoroshun, L.P. Necking Near a Crack Tip in a Plate: a Plane Problem. Int Appl Mech 51, 326–341 (2015). https://doi.org/10.1007/s10778-015-0693-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-015-0693-7

Keywords

Navigation