Skip to main content
Log in

Shielding of elastic nonstationary waves by interfaces

  • Published:
International Applied Mechanics Aims and scope

The ray method is used to solve the problem of the propagation of discontinuous (weak shock) waves in inhomogeneous elastic media. A procedure for drawing the fronts of reflected and refracted waves at interfaces and calculating their intensities is proposed. The effect of shielding discontinuous waves by one or two interfaces is studied. The cases of slipping and non-slipping contact are examined

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).

    Google Scholar 

  2. V. I. Gulyaev and G. M. Ivanchenko, “Diffraction of a plane discontinuous wave in layered anisotropic elastic media,” Mech. Comp. Mater., 39, No. 1, 27–36 (2003).

    Article  Google Scholar 

  3. V. I. Gulyaev, P. Z. Lugovoi, G. M. Ivanchenko, and E. V. Yakovenko, “The diffraction of a shock wave at the curvilinear interface of transversely isotropic elastic media,” J. Appl. Mat. Mech., 64, No. 3, 379–386 (2000).

    Article  Google Scholar 

  4. V. I. Gulyaev, P. Z. Lugovoi, V. B. Kritskii, and G. M. Ivanchenko, “Reflection and refraction of plane discontinuous waves by paraboloidal interfaces between anisotropic elastic media,” Geofiz. Zh., 27, No. 3, 418–426 (2005).

    Google Scholar 

  5. V. I. Gulyaev, P. Z. Lugovoi, and G. M. Ivanchenko, “Diffraction of discontinuous waves by ellipsoidal interfaces of transversely isotropic elastic media,” Int. Appl. Mech., 40, No. 10, 1145–1151 (2004).

    ADS  Google Scholar 

  6. I. K. Kikoin, Tables of Physical Quantities [in Russian], Atomizdat, Moscow (1976).

    Google Scholar 

  7. Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media, Springer Verlag, Berlin (1990).

    Book  Google Scholar 

  8. G. I. Petrashen’, Wave Propagation in Anisotropic Elastic Media [in Russian], Nauka, Leningrad (1980).

    Google Scholar 

  9. Yu. N. Podil’chuk and Yu. K. Rubtsov, “Application of the method of ray series to the investigation of axisymmetric nonstationary problems of the dynamical theory of elasticity,” Int. Appl. Mech., 22, No. 3, 201–207 (1986).

    MathSciNet  MATH  Google Scholar 

  10. Yu. N. Podil’chuk and Yu. K. Rubtsov, Ray Methods in the Theory of Propagation and Scattering of Waves [in Russian], Naukova Dumka, Kyiv (1988).

    Google Scholar 

  11. F. I. Fedorov, Theory of Elastic Waves in Crystals, Plenum, New York (1968).

    Google Scholar 

  12. R. D. Borcherdt, “Reflection–refraction of general P- and type-I S-waves in elastic and inelastic solids,” Geophys. J. Royal Astron. Soc., 70, 621–638 (1982).

    Article  MATH  Google Scholar 

  13. C. Chapman, Fundamentals of Seismic Wave Propagation, Cambridge Univ. Press, Cambridge (2004).

    Book  Google Scholar 

  14. J. M. Crichlow, “The effect of underground structure on seismic motions of the ground surface,” Geophys. J. Royal Astron. Soc., 70, 563–575 (1982).

    Article  Google Scholar 

  15. O. K. Ersoy, Diffraction, Fourier Optics and Imaging, Wiley, Blackwell (2007).

    Book  MATH  Google Scholar 

  16. V. V. Gaydachuk, V. I. Koshel’, and P. Z. Lugovoi, “Stress distribution around mine working,” Int. Appl. Mech., 46, No. 9, 981–986 (2010).

    Article  Google Scholar 

  17. A. Ya. Grigorenko, I. I. Dyyak, S. I. Matysyak, and I. I. Prokopyshyn, “Domain decomposition methods applied to solve frictionless-contact problems for multilayer elastic bodies,” Int. Appl. Mech., 46, No. 4, 388–399 (2010).

    Article  ADS  Google Scholar 

  18. V. I. Gulyaev, P. Z. Lugovoi, Yu. A. Zaets, and M. Nabil, “Evolution of the fronts of quasi-compressional and quasi-discontinuous waves in inhomogeneous transversely isotropic elastic media,” Int. Appl. Mech., 47, No. 1, 55–61 (2011).

    Article  ADS  Google Scholar 

  19. A. N. Norris and G. R. Wickham, “Elastic waves in inhomogeneously oriented anisotropic materials,” Wave Motion, 33, No. 1, 97–108 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. M. Pai, “Wave propagation in inhomogeneous media: A planewave layer interaction method,” Wave Motion, 13, No. 3, 205–306 (1991).

    Article  MathSciNet  Google Scholar 

  21. O. N. Panasyuk, “Propagation of quasishear waves in prestressed materials with unbonded layers,” Int. Appl. Mech., 47, No. 3, 276–282 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  22. A. L. Virovlyansky, A. Yu. Kazarova, and L. Ya. Lyubavin, “Ray-based description of normal mode amplitudes in a range-dependent waveguide,” Wave Motion, 42, No. 4, 317–334 (2005).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Gulyaev.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 48, No. 4, pp. 67–77, July–August 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulyaev, V.I., Lugovoi, P.Z. & Zayets, Y.A. Shielding of elastic nonstationary waves by interfaces. Int Appl Mech 48, 414–422 (2012). https://doi.org/10.1007/s10778-012-0528-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-012-0528-8

Keywords

Navigation