Skip to main content
Log in

Oscillations of conservative systems with complex trajectories

  • Published:
International Applied Mechanics Aims and scope

Abstract

The principles of formation of closed and quasiperiodic orbitally stable trajectories of conservative systems are formulated. It is revealed that irregular oscillations are due to the orbital instability of quasiperiodic oscillations. A bistable oscillator with periodic forcing is considered. The existence of random oscillations at low level of energy and the conditions for orbitally stable oscillations are established

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems, Wiley, New York (1973).

    MATH  Google Scholar 

  2. R. Balesku, Equilibrium and Nonequilibrium Statistical Mechanics, Vol. 2, Wiley, New York (1978).

    Google Scholar 

  3. G. D. Birkhoff, Dynamical Systems, 2nd ed., AMS Colloq. Publ., No. 9, Providence (1927).

  4. G. M. Zaslavskii, Physics of Chaos in Hamiltonian Systems [in Russian], Inst. Komp. Issled., Moscow-Izhevsk (2004).

    Google Scholar 

  5. V. V. Kozlov, Methods of Qualitative Analysis in Solid Dynamics [in Russian], NITs “Regul. Khaot. Dinam,” Izhevsk (2000).

    Google Scholar 

  6. A. J. Lichtenberg and M. A. Liberman, Regular and Chaotic Dynamics, Springer-Verlag, New York (1992).

    MATH  Google Scholar 

  7. A. M. Lyapunov, The General Problem of the Stability of Motion, Taylor & Francis, London (1992).

    MATH  Google Scholar 

  8. Yu. I. Neimark and V. V. Landa, Stochastic and Chaotic Oscillations [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  9. V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations [in Russian], GITTL, Moscow (1949).

    Google Scholar 

  10. N. V. Nikitina, “Constructing the phase portrait of a bistable oscillator,” Dop. NAN Ukrainy, No. 10, 59–64 (2006).

  11. H. Poincaré, Selected Works [Russian translation], Vols. 1–3, Nauka, Moscow (1971–1974).

    Google Scholar 

  12. M. I. Rabinovich and D. I. Trubetskov, An Introduction to the Theory of Vibrations and Waves [in Russian], NITs “Regul. Khaot. Dinam,” Moscow-Izhevsk (2000).

    Google Scholar 

  13. L. P. Shil'nikov, “Bifurcation theory and the Lorentz model,” supplement in the Russian translation of J. H. Marsden and M. F. McCracken, The Hopf Bifurcation and Its Applications, Springer-Verlag, New York (1976).

    Google Scholar 

  14. L. P. Shil'nikov, A. L. Shil'nikov, D. V. Turaev, and L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics [in Russian], Pt. 1, Inst. Komp. Issled., Moscow (2004).

    Google Scholar 

  15. A. Y. Aguilar and C. Cruz-Hernández, “Synchronization of two hyperchaotic Rössler systems: Model-matching approach,” WSEAS Trans. on Systems, No. 2, 198–203 (2002).

  16. M. Bohner and A. A. Martynyuk, “Elements of Lyapunov stability theory for dynamic equations on time scale,” Int. Appl. Mech., 43, No. 9, 949–970 (2007).

    Article  Google Scholar 

  17. C. Cruz-Hernández, “Synchronization of time-delay Chua's oscillator with application to secure communication,” Nonlin. Dynam. Syst. Theory, No. 1, 1–13 (2004).

  18. M. Henon and C. Heiles, “The applicability of the third integral of motion: Some numerical experiments,” Astron. J., 69, No. 1, 73–79 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Itoh, T. Yang, and L. O. Chua, “Conditions for impulsive synchronization of chaotic and hyperchaotic systems,” Int. J. Bifurc. Chaos, No. 2, 551–560 (2001).

    Google Scholar 

  20. T. S. Krasnopolskaya and A. Yu. Shvets, “Deterministic chaos in system generator-piezoceramic transducer,” Nonlin. Dynam. Syst. Theory, No. 4, 367–387 (2006).

  21. D. Lopez-Mancilla and C. Cruz-Hernández, “An analysis of robustness on the synchronization of chaotic systems under nonvanishing perturbations using sliding modes,” WSEAS Trans. on Mathematics, No. 2, 364–369 (2004).

  22. D. Lopez-Mancilla and C. Cruz-Hernández, “Output synchronization of chaotic systems: Model-matching approach with application to secure communication,” Nonlin. Dynam. Syst. Theory, No. 2, 141–156 (2005).

  23. D. Lopez-Mancilla, C. Cruz-Hernández, and C. Posadas-Castillo, “A modified chaos-based communication scheme using Hamiltonian forms and observer,” J. Phys., Conf. Ser., 23, 267–275 (2005).

    Article  ADS  Google Scholar 

  24. A. A. Martynyuk and N. V. Nikitina, “Bistable oscillator theory revisited,” Int. Appl. Mech., 38, No. 4, 489–497 (2002).

    Article  MathSciNet  Google Scholar 

  25. A. A. Martynyuk and N. V. Nikitina, “On approximate representation of periodic motions in a saddle point,” Int. Appl. Mech., 38, No. 9, 1138–1144 (2002).

    Article  MathSciNet  Google Scholar 

  26. A. A. Martynyuk and N. V. Nikitina, “Studying the complex oscillations of a star in the field of a galaxy,” Int. Appl. Mech., 40, No. 4, 456–461 (2004).

    Article  Google Scholar 

  27. A. A. Martynyuk and N. V. Nikitina, “Complex oscillations revisited,” Int. Appl. Mech., 41, No. 2, 179–186 (2005).

    Article  Google Scholar 

  28. A. A. Martynyuk and N. V. Nikitina, “Complex behavior of a trajectory in single-and double-frequency systems,” Int. Appl. Mech., 41, No. 3, 315–323 (2005).

    Article  MathSciNet  Google Scholar 

  29. A. A. Martynyuk and N. V. Nikitina, “On oscillations of a frictional pendulum,” Int. Appl. Mech., 42, No. 2, 214–220 (2006).

    Article  MathSciNet  Google Scholar 

  30. A. A. Martynyuk and V. I. Slyn'ko, “An approach to constructing mathematical models of moving mechanical systems under uncertainty,” Int. Appl. Mech., 43, No. 2, 1157–1166 (2007).

    Article  Google Scholar 

  31. N. V. Nikitina, “Ultimate energy of a double pendulum undergoing quasiperiodic oscillations,” Int. Appl. Mech., 43, No. 9, 1035–1042 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To the Beginning of the Third Millennium

__________

Translated from Prikladnaya Mekhanika, Vol. 44, No. 7, pp. 3–25, July 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martynyuk, A.A., Nikitina, N.B. Oscillations of conservative systems with complex trajectories. Int Appl Mech 44, 721–738 (2008). https://doi.org/10.1007/s10778-008-0086-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-008-0086-2

Keywords

Navigation