Skip to main content
Log in

On the search for singularities in incompressible flows

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In these notes we give some examples of the interaction of mathematics with experiments and numerical simulations on the search for singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Beale, T. Kato, and A. Majda: Remarks on the breakdown of smooth solutions for the 3D Euler equations. Commun. Math. Phys. 94 (1984), 61–66.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. L. Bertozzi, P. Constantin: Global regularity for vortex patches. Commun. Math. Phys. 152 (1993), 19–28.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. L. Bertozzi, A. J. Majda: Vorticity and the Mathematical Theory of Incompresible Fluid Flow. Cambridge Texts in Applied Mathematics No. 27. Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  4. D. Chae: On the Euler equations in the critical Triebel-Lizorkin spaces. Arch. Ration. Mech. Anal. 170 (2003), 185–210.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Chae: The quasi-geostrophic equation in the Triebel-Lizorkin spaces. Nonlinearity 16 (2003), 479–495.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Chae, J. Lee: Global well-posedness in the super-critical dissipative quasi-geostrophic equations. Commun. Math. Phys. 233 (2003), 297–311.

    MATH  MathSciNet  Google Scholar 

  7. J. Y. Chemin: Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. Ann. Sci. Ec. Norm. Supér. 26 (1993), 517–542. (In French.)

    MATH  MathSciNet  Google Scholar 

  8. P. Constantin: Energy spectrum of quasi-geostrophic turbulence. Phys. Rev. Lett. 89 (2002), 1804501–1804504.

    Google Scholar 

  9. P. Constantin, D. Córdoba, and J. Wu: On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50 (2001), 97–107.

    MATH  MathSciNet  Google Scholar 

  10. P. Constantin, C. Fefferman, and A. J. Majda: Geometric constraints on potentially singular solutions for the 3-D Euler equations. Commun. Partial Differ. Equation 21 (1996), 559–571.

    MATH  MathSciNet  Google Scholar 

  11. P. Constantin, A. J. Majda, and E. Tabak: Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7 (1994), 1495–1533.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Constantin, Q. Nie, and N. Schorghofer: Nonsingular surface-quasi-geostrophic flow. Phys. Lett. A 241 (1998), 168–172.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Constantin, J. Wu: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30 (1999), 937–948.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Córdoba, D. Córdoba: A pointwise estimate for fractionary derivatives with applications to partial differential equations. Proc. Natl. Acad. Sci. USA 100 (2003), 15316–15317.

  15. A. Córdoba, D. Córdoba: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249 (2004), 511–528.

    Article  MATH  Google Scholar 

  16. A. Córdoba, D. Córdoba, C. L. Fe-erman, and M. A. Fontelos: A geometrical constraint for capillary jet breakup. Adv. Math. 187 (2004), 228–239.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Córdoba: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. Math. 148 (1998), 1135–1152.

    Article  MATH  Google Scholar 

  18. D. Córdoba, C. Fefferman: On the collapse of tubes carried by 3D incompressible flows. Commun. Math. Phys. 222 (2001), 293–298.

    Article  MATH  Google Scholar 

  19. D. Córdoba, C. Fefferman, and R. de la Llave: On squirt singularities in hydrodynamics. SIAM J. Math. Anal. 36 (2004), 204–213.

    Article  MATH  MathSciNet  Google Scholar 

  20. D. Córdoba, C. Fefferman, and J. L. Rodrigo: Almost sharp fronts for the surface quasi-geostrophic equations. Proc. Natl. Acad. Sci. USA 101 (2004), 2687–2691.

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Córdoba, M. Fontelos, A. Mancho, and J. L. Rodrigo: Evidence of singularities for a family of contour dynamics equations. Proc. Natl. Acad. Sci. USA 102 (2005), 5949–5952.

    Article  MathSciNet  Google Scholar 

  22. R. J. Diperna, P. L. Lions: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511–547.

    Article  MATH  MathSciNet  Google Scholar 

  23. C. R. Doering, J. D. Gibbon: Applied analysis of the Navier Stokes equations. Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  24. C. Foias, C. Guillopé, and R. Témam: New a priori estimates for Navier-Stokes equations in dimension 3. Commun. Partial Differ. Equations 6 (1981), 329–359.

    MATH  Google Scholar 

  25. I. M. Held, R. Pierrehumbert, and S.T. Garner: Surface quasi-geostrophic dynamics. J. Fluid Mech. 282 (1995), 1–20.

    Article  MATH  MathSciNet  Google Scholar 

  26. N. Ju: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Commun. Math. Phys. 255 (2005), 161–181.

    Article  MATH  MathSciNet  Google Scholar 

  27. H. Kozono, Y. Taniuchi: Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Commun. Math. Phys. 214 (2000), 191–200.

    Article  MATH  MathSciNet  Google Scholar 

  28. T. A. Kowalewski: On the separation of droplets from a liquid jet. Fluid Dyn. Res. 17 (1996), 121–145.

    Article  Google Scholar 

  29. K. Ohkitani, M. Yamada: Inviscid and inviscid-limit behavior of a surface quasi-geostrophic flow. Phys. Fluids 9 (1997), 876–882.

    Article  MathSciNet  Google Scholar 

  30. J. Pedlosky: Geophysical Fluid Dynamics. Springer-Verlag, New York, 1987.

    MATH  Google Scholar 

  31. M. T. Plateau: Smithsonian Report 250. 1863.

  32. Rayleigh, Lord (J.W. Strutt): On the instability of jets. Proc. L. M. S. 10 (1879), 4–13.

    Google Scholar 

  33. S. Resnick: Dynamical problem in nonlinear advective partial differential equations. PhD. Thesis. University of Chicago, 1995.

  34. J. L. Rodrigo: On the evolution of sharp fronts for the quasi-geostrophic equation. Commun. Pure Appl. Math. 58 (2005), 821–866.

    Article  MATH  MathSciNet  Google Scholar 

  35. R. Salmon: Lectures on Geophysical Fluid Dynamics. Oxford University Press, New York, 1998.

    Google Scholar 

  36. F. Savart: Mémoire sur la Constitution des veines liquides lancées par des orifices circulaires en mince paroi. Ann. Chim. Phys. 53 (1833), 337–386. (In French.)

    Google Scholar 

  37. X. D. Shi, M. P. Brenner, and S. R. Nagel: A cascade of structure in a drop falling from a faucet. Science 265 (1994), 219–222.

    MathSciNet  Google Scholar 

  38. E. M. Stein: Singular Integrals and Di-erentiability Properties of Functions. Princeton University Press, Princeton, 1970.

    Google Scholar 

  39. E. M. Stein: Harmonic Analysis. Princeton University Press, Princeton, 1993.

    Google Scholar 

  40. M. Sussman, P. Smereka: Axisymmetric free boundary problems. J. Fluid Mech. 341 (1997), 269–294.

    Article  MATH  MathSciNet  Google Scholar 

  41. L. Tartar: Topics in Nonlinear Analysis. Publications Mat. D’Orsay, No. 7813. Univ. de Paris-Sud, Orsay, 1978.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Córdoba, D. On the search for singularities in incompressible flows. Appl Math 51, 299–320 (2006). https://doi.org/10.1007/s10778-006-0108-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0108-x

Keywords

Navigation