Skip to main content

Advertisement

Log in

Energy Approach to the Formulation of Boundary Problems of Nonlinear Thermomechanics for Elastic Systems

  • Published:
International Applied Mechanics Aims and scope

Abstract

An energy approach is proposed to derive the physical constitutive equations of nonlinear thermomechanics for inertial elastic systems. A potential of local inertial thermodynamic state and a potential of thermoelastic energy dissipation are introduced. The variational formulation of nonlinear boundary problems of thermoelasticity is implemented on the basis of the Hamiltonian energy functional. Sufficient conditions for the convexity of the functional are formulated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ya. I. Burak, “Mathematical model for potential description of nonlinear elastic systems,” Dop. NAN Ukrainy, No. 2, 41–49 (1995).

  2. Ya. I. Burak and G. I. Moroz, “Variational formulation and solution of boundary problems in the nonlinear theory of plates using the energy approach,” RAN, Prikl. Mat. Mekh., 67, No.6, 977–985 (2003).

    MathSciNet  Google Scholar 

  3. Ya. I. Burak and G. I. Moroz, “Mathematical problems in the nonlinear mechanics of elastic systems,” Mat. Met. Fiz.-Mekh. Polya, 45, No.4, 40–46 (2002).

    MathSciNet  Google Scholar 

  4. J. W. Gibbs, Thermodynamics. Statistical Mechanics [Russian translation], Nauka, Moscow (1982).

    Google Scholar 

  5. E. I. Grigolyuk, Ya. S. Podstrigach, and Ya. I. Burak, Optimal Heating of Shells and Plates [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  6. I. Gyarmati, Nonequilibrium Thermodynamics: Field Theory and Variational Principles, Springer Verlag, Berlin (1970).

    Google Scholar 

  7. A. D. Kovalenko, An Introduction to Thermoelasticity [in Russian], Naukova Dumka, Kiev (1965).

    Google Scholar 

  8. A. D. Kovalenko, Selected Works [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  9. A. D. Kovalenko, “The current theory of thermoelasticity,” Int. Appl. Mech., 6, No.4, 355–360 (1970).

    MathSciNet  Google Scholar 

  10. A. I. Lur'e, Nonlinear Theory of Elasticity [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  11. W. Nowacki, Theory of Elasticity [in Polish], PWN, Warsaw (1970).

    Google Scholar 

  12. Ya. S. Podstrigach and Yu. M. Kolyano, Generalized Thermomechanics [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  13. Ya. S. Podstrigach and R. N. Shvets, Thermoelasticity of Thin Shells [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  14. A. Baltov, “Materials sensitive to the type of process,” Int. Appl. Mech., 40, No.4, 361–369 (2004).

    Article  MATH  Google Scholar 

  15. Gy. Beda, “Constitutive equations in continuum mechanics,” Int. Appl. Mech., 39, No.2, 123–131 (2003).

    MATH  MathSciNet  Google Scholar 

  16. I. K. Senchenkov, Ya. A. Zhuk, and V. G. Karnaukhov, “Modeling the thermomechanical behavior of physically nonlinear materials under monoharmonic loading,” Int. Appl. Mech., 40, No.9, 943–969 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 41, No. 9, pp. 52–59, September 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burak, Y.I., Moroz, G.I. Energy Approach to the Formulation of Boundary Problems of Nonlinear Thermomechanics for Elastic Systems. Int Appl Mech 41, 1000–1006 (2005). https://doi.org/10.1007/s10778-006-0007-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0007-1

Keywords

Navigation