Skip to main content
Log in

Resonant Electromechanical Vibrations of Piezoelectric Plates

  • Published:
International Applied Mechanics Aims and scope

Abstract

The scientific results on the resonant electromechanical vibrations of piezoceramic plates in the form of disks, rings, and polygons obtained over the last 30 years are analyzed, systematized, and generalized. Emphasis is on experimental methods. It is shown that all piezoceramic plates have vibration modes at which deformations are in-phase over the entire volume of the body

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Alenkovich, “A note on the calculation of vibrations of a loaded thin piezoceramic plate poled across the thickness,” Nauchn. Tr. VUZov LitSSR, Ul'trazvuk, 20, 27–37 (1988).

    Google Scholar 

  2. D. Berlinkur, D. Kerran, and G. Jaffe, “Piezoceramic electric and piezomagnetic materials and their application in transducers,” in: W. P. Mason (ed.), Physical Acoustics, Principles and Methods, Vol. 1, Part A, Methods and Devices, Academic Press, New York-London (1964).

    Google Scholar 

  3. S. A. Boidek, “A set-up for recording impedance diagrams of electroacoustic transducers,” in: 6th All-Union Acoust. Conf. GP-7 [in Russian], Akin, Moscow (1968), pp. 1–4.

    Google Scholar 

  4. A. M. Bolkisev, V. L. Karlash, and N. A. Shul'ga, “Temperature dependence of the properties of piezoelectric ceramics,” Int. Appl. Mech., 20, No.7, 650–653 (1984).

    Google Scholar 

  5. A. A. Bondarenko, N. I. Karas', and A. F. Ulitko, “Methods for determining the vibrational dissipation characteristics of piezoceramic structural elements,” Int. Appl. Mech., 18, No.2, 175–179 (1982).

    Google Scholar 

  6. I. A. Vekovishcheva, “Simple cases of bending of thin piezoelectric plates,” Int. Appl. Mech., 13, No.12, 1275–1277 (1977).

    Google Scholar 

  7. I. P. Vovkodav and A. T. Ulitko, “Radial vibrations of a thin piezoceramic plate,” DAN URSR, Ser. A, No. 9, 830–833 (1973).

  8. V. G. Gavrilyachenko, A. Ya. Dantsiger, V. A. Doroshenko, et al., “Increasing the cyclic strength of piezoceramic materials,” in: Proc. 2nd All-Union Semin. on Strength of Materials and Structural Members at Acoustic and Ultrasonic Frequencies of Loading [in Russian], Naukova Dumka, Kiev (1980), pp. 194–198.

    Google Scholar 

  9. I. A. Glozman, Piezoceramics [in Russian], Energia, Moscow (1972).

    Google Scholar 

  10. GOST 12370-72. Piezoceramic Materials: Test Methods [in Russian], Izd. Stand., Moscow (1973).

  11. V. T. Grinchenko, V. L. Karlash, V. V. Meleshko, and A. F. Ulitko, “Investigation of planar vibrations of rectangular piezoceramic plates,” Int. Appl. Mech., 12, No.5, 483–488 (1976).

    Google Scholar 

  12. V. T. Grinchenko, A. F. Ulitko, and N. A. Shul'ga, Electroelasticity, Vol. 5 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  13. A. N. Guz, V. A. Zarutskii, I. Ya. Amiro, et al., Experimental Investigations into Thin-Walled Structures [in Russian], Naukova Dumka, Kiev (1984).

    Google Scholar 

  14. V. Domarkas, A. Mazhonas, and A. Pyatrauskas, “Bending vibrations of compound rectangular piezoelectric transducers,” Nauchn. Tr. VUZov LitSSR, Ul'trazvuk, 21, 43–49 (1989).

    Google Scholar 

  15. A. A. Erofeev, G. A. Danov, and V. N. Frolov, Piezoceramic Transformers and Their Application in Radio Electronics [in Russian], Radio i Svyaz', Moscow (1988).

    Google Scholar 

  16. V. L. Karlash, “Nonsymmetric vibrations of piezoelectric ceramic rings polarized along the thickness, ” Int. Appl. Mech., 14, No.12, 1303–1308 (1978).

    Google Scholar 

  17. V. L. Karlash, “Radial modes of piezoceramic disks with open circuit electrodes,” Int. Appl. Mech., 17, No.9, 836–839 (1981).

    Google Scholar 

  18. V. L. Karlash, “Theory of asymmetric vibrations of piezoceramic circular plates with separated electrodes,” Izv AN ArmSSR, Mekh., 34, No.6, 60–65 (1981).

    Google Scholar 

  19. V. L. Karlash, “Amplitude-phase relationships in the piezotransformer sensor method,” Int. Appl. Mech., 19, No.10, 911–916 (1983).

    Google Scholar 

  20. V. L. Karlash, “Influence of energy dissipation on the frequency response of the admittance of a thin piezoceramic disk,” Elektrichestvo, No. 4, 59–61 (1984).

  21. V. L. Karlash, “Energy dissipation during vibrations of thin circular piezoceramic plates,” Int. Appl. Mech., 20, No.5, 460–464 (1984).

    Google Scholar 

  22. V. L. Karlash, “Resonant vibrations of thin piezoceramic plates with curved boundaries,” Prikl. Mekh., 23, No.7, 105–109 (1987).

    Google Scholar 

  23. V. L. Karlash, “Peculiarities of planar vibrations of piezoelectric round plates,” Int. Appl. Mech., 23, No.11, 1059–1063 (1987).

    Google Scholar 

  24. V. L. Karlash, “Nonaxisymmetric vibrations of circular piezoceramic rings with an electrode coating having two-sided diametrical slits,” Int. Appl. Mech., 24, No.8, 798–803 (1988).

    Google Scholar 

  25. V. L. Karlash, Experimental Study of the Stress-Strain State of Structural Members by the Method of Piezoceramic Models [in Russian], Manuscript No. 5001-V88, dep VINITI 06.23.88, Kiev (1988).

  26. V. L. Karlash, “Theory of planar vibrations of thin piezoceramic plates,” in: Proc. 4th Symp. on Theoretical Fundamentals of Magnetoelasticity [in Russian], Yerevan (1989), pp. 106–112.

  27. V. L. Karlash, “Nonaxisymmetric vibrations of circular piezoceramic multielectrode rings with thickness polarization,” Int. Appl. Mech., 26, No.4, 374–378 (1990).

    Google Scholar 

  28. V. L. Karlash, “Forced high-frequency vibrations of thin circular piezoceramic disks,” Int. Appl. Mech., 31, No.5, 394–398 (1995).

    Article  Google Scholar 

  29. V. L. Karlash, “Planar thickness vibrations of piezoceramic rings and disks,” Prikl. Mekh., 33, No.7, 72–78 (1997).

    Google Scholar 

  30. V. L. Karlash, “The forced electroelastic vibrations of a planar piezoelectric transformer of longitudinal-transverse type,” Int. Appl. Mech., 36, No 7, 923–930 (2000).

    Article  Google Scholar 

  31. V. L. Karlash, “Frequency properties of a planar piezoelectric transformer of longitudinal-transverse type,” Int. Appl. Mech., 36, No.8, 1103–1111 (2000).

    Article  Google Scholar 

  32. V. L. Karlash, “The stress state of a rectangular piezoceramic plate with transverse-longitudinal polarization,” Int. Appl. Mech., 37, No.3, 386–392 (2001).

    Article  Google Scholar 

  33. V. L. Karlash, “Transformation ratio and vibration modes of a Rosen-type piezoelectric transformer, ” Elektrichestvo, No. 1, 51–55 (2002).

  34. V. L. Karlash, “Longitudinal vibrations and input admittance of a compound piezoceramic rectangular plate with cross polarization,” Int. Appl. Mech., 38, No.5, 617–622 (2002).

    Article  Google Scholar 

  35. V. L. Karlash, “Electroelastic vibrations and a refined formula for the transformation ratio of a piezotransformer plate,” Visn. Donetsk. Univ., Ser. A, Pryrod. Nauky, 1, 98–102 (2003).

    Google Scholar 

  36. V. L. Karlash, “Influence of energy losses on the performance of a piezoelectric transformer plate, ” Int. Appl. Mech., 39, No.8, 987–992 (2003).

    Article  Google Scholar 

  37. V. L. Karlash, Experimental and Theoretical Analysis of Electromechanical Resonant Vibrations and Efficiency of Energy Conversion in Piezoceramic Thin-Walled Elements [in Ukrainian], DSci Thesis, Inst. Mekh. NAN Ukrainy, Kiev (2004).

    Google Scholar 

  38. V. L. Karlash and A. T. Ulitko, “A method for studying the radial vibrations of a thin piezoceramic plate,” DAN URSR, Ser. A, No. 9, 804–807 (1974).

  39. V. L. Karlash and A. F. Ulitko, “A method for studying mechanical stresses in vibrating piezoceramic bodies,” Elektrichestvo, No. 11, 82–83 (1976).

  40. V. L. Karlash and A. F. Ulitko, “Investigating the vibrations of piezoceramic elements by the piezotransformer-transducer method,” in: A. N. Guz and V. A. Zarutskii (eds.), Experimental Investigations of Thin-Walled Structures [in Russian], Naukova Dumka, Kiev (1984), pp. 178–196.

    Google Scholar 

  41. V. L. Karlash, V. A. Klyushnichenko, Yu. A. Kramarov, and A. F. Ulitko, “Radial vibrations of thin piezoceramic disks under a nonuniform electric load,” Int. Appl. Mech., 13, No.8, 784–789 (1977).

    Google Scholar 

  42. V. L. Karlash, R. F. Kubyak, E. Ya. Filatov, and N. A. Shul'ga, “A possibility of using piezoceramic transducers to control the level of loading in fatigue tests,” Zavod. Labor., 53, No.12, 64–65 (1987).

    Google Scholar 

  43. V. G. Karnaukhov, I. F. Kirichok, and V. I. Kozlov, “Electromechanical vibrations and dissipative heating of viscoelastic thin-walled piezoelements,” Int. Appl. Mech., 37, No.2, 182–212 (2001).

    Article  Google Scholar 

  44. V. G. Karnaukhov, V. I. Kozlov, V. V. Mikhailenko, and S. V. Mikhailenko, “Planar vibrations of piezoceramic plates with account for material depolarization caused by vibratory heating,” Int. Appl. Mech., 30, No.3, 222–227 (1994).

    Article  Google Scholar 

  45. W. G. Cady, Piezoelectricity, McGraw-Hill, New York (1946).

    Google Scholar 

  46. H. W. Katz (ed.), Solid State Magnetic and Dielectric Devices, Wiley, New York (1959).

    Google Scholar 

  47. V. N. Lazutkin, Yu. V. Tsyganov, and V. A. Klyushnichenko, “Radial vibrations and impedance of piezoceramic rings polarized along the height,” in: Piezoelectric Materials and Transducers [in Russian], Izd. RGU, Rostov-on-Don (1971), pp. 4–9.

    Google Scholar 

  48. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Cambridge Univ. Press (1959).

  49. W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics, Van Nostrand, New York (1950).

    Google Scholar 

  50. K. Okazaki and M. Umino, “Analysis of vibrations in thin piezoceramic resonators with annular electrodes,” Nippon Onkyo Gakkaishi (J. Acoust. Soc. Japan), 25, No.6, 325–334 (1969).

    Google Scholar 

  51. O. P. Petin, Yu. A. Kramarov, and G. P. Petin, “A set-up for measuring the admittance-frequency characteristics of piezoelectric transducers,” in: Piezoelectric Materials and Transducers [in Russian], Izd. RGU, Rostov-on-Don (1977), pp. 22–25.

    Google Scholar 

  52. A. Pyatrauskas, C. Prialgauskas, and A. Mazhonas, “Investigation of vibrations of compound circular piezoelectric transducers,” Nauchn. Tr. VUZov LitSSR, Ul'trazvuk, 19, 107–113 (1987).

    Google Scholar 

  53. Y. Ramanauskas, “Experimental investigation of disk bimorph elements under flexural vibrations,” Nauchn. Tr. VUZov LitSSR, Ul'trazvuk, 20, 158–163 (1990).

    Google Scholar 

  54. S. I. Rudnitskii, V. M. Sharapov, and N. A. Shul'ga, “Vibrations of a bimorphic disk transducer of the metal-piezoceramic type,” Int. Appl. Mech., 26, No.10, 973–980 (1990).

    Google Scholar 

  55. K. Shibayama, “Piezoceramic transducers as short rods,” in: Y. Kikuchi (ed.), Ultrasonic Transducers, Corona, Tokyo (1969).

  56. E. G. Smazhevskaya and N. B. Fel'dman, Piezoelectric Ceramics [in Russian], Sov. Radio, Moscow (1971).

    Google Scholar 

  57. E. G. Smazhevskaya, R. F. Zhuchina, and N. A. Podol'ner, “Influence of the basic parameters of a piezoceramic material on the characteristics of resonant piezoelectric transformers,” in: Ultrasonic Transmitters and Receivers [in Russian], Pt. 2, LDNTP, Leningrad (1966), pp. 22–35.

    Google Scholar 

  58. R. Truell, C. Elbaum, and B. Chick, Ultrasonic Methods in Solid State Physics, Acad. Press, New York (1969).

    Google Scholar 

  59. A. F. Ulitko, “The theory of vibrations of piezoceramic bodies,” Tepl. Napr. Elem. Konstr., 15, 90–99 (1975).

    Google Scholar 

  60. G. G. Chernykh, L. S. Soboleva, and V. V. Kharitonov, “Radial vibrations of thin piezoceramic disks and rings,” Electron. Tekhn., No. 1, 67–84 (1972).

    Google Scholar 

  61. N. A. Shul'ga and A. M. Bolkisev, Vibrations of Piezoelectric Bodies [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  62. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Academic Press, New York (1971).

    Google Scholar 

  63. W. G. Cady, “Theory of longitudinal vibrations of viscous rods,” Phys. Rev., 19, No.1, 1–6 (1922).

    Article  Google Scholar 

  64. M. C. Dokmeci, “Recent progress in the dynamic applications of piezoelectric crystals,” The Shock and Vibration Digest, 20, No.2, 3–20 (1988).

    Google Scholar 

  65. D. E. Dye, “The piezoelectric quartz resonator and its equivalent circuit,” Proc. Phys. Soc. (London), 38, 399–453 (1926).

    Google Scholar 

  66. H. Ekstein, “Free vibrations of anisotropic bodies,” Phys. Rev., 66, 109–117 (1944).

    Article  Google Scholar 

  67. Y. Fuda, K. Kumasaka, M. Katsumo, H. Sato, and Y. Ino, “Piezoelectric transformer for cold cathode fluorescent lamp inverter,” Jpn. J. Appl. Phys., 1.36, No.5B, 3050–3052 (1997).

    Article  Google Scholar 

  68. S. K. Ha, “Analysis of the asymmetric triple-layered piezoelectric bimorf using equivalent circuit models,” J. Acoust. Soc. Am., 110, 856–864 (2001).

    Article  Google Scholar 

  69. S. K. Ha and Y. H. Kim, “Analysis of an asymmetrical piezoelectric annular bimorf using impedance and admittance matrices,” J. Acoust. Soc. Am., 110, 212–215 (2001).

    Google Scholar 

  70. S. Hirose, N. Magami, and S. Takanashi, “Piezoelectric ceramic transformer using piezoelectric lateral effect on input and on output,” Jpn. J. Appl. Phys., 35, 3038–3041 (1996).

    Article  Google Scholar 

  71. R. Holland, “Representation of dielectric, elastic and piezoelectric losses by complex coefficients, ” IEEE Trans. Sonics and Ultrasonics, SU-14, 18–20 (1967).

    Google Scholar 

  72. R. Holland and E. P. Eer Nisse, Design of Resonant Piezoelectric Devices, M. I. T. Press, Cambridge-London (1969).

    Google Scholar 

  73. J. Hu, Y. Fuda, M. Katsuno, and T. Yoshiba, “A study on the rectangular-bar shaped multilayer piezoelectric transformer using length extensional vibration mode,” Jpn. J. Appl. Phys., 38, 3208–3212 (1999).

    Article  Google Scholar 

  74. H. Ikushima and K. Ohji, “Observation of Chladni figures in piezoelectric ceramic plates of rectangular form,” Jpn. J. Appl. Phys., 13, 20–33 (1974).

    Article  Google Scholar 

  75. T. Inoue, M. Yamamoto, S. Kawashima, and S. Hirose, “Third order longitudinal piezoelectric ceramic transformer for high-voltage power inverter,” IEICE T ELECTRON, E81, No.7, 1128–1135 (1998).

    Google Scholar 

  76. IRE Standards on Piezoelectric Crystals: Measurements of Piezoelectric Ceramics, Proc. IRE, 49, 1161–1169 (1961).

  77. T. Irie, G. Yamada, and K. Yoda, “Free vibration of membranes and plates with four curved edges,” J. Acoust. Soc. Am., 70, 1083–1088 (1981).

    Article  Google Scholar 

  78. V. L. Karlash, “Electroelastic characteristics of a piezoelectric transformer plate,” Int. Appl. Mech., 39, No.7, 870–874 (2003).

    Article  Google Scholar 

  79. V. L. Karlash, “Electroelastic vibrations and transformation ratio of a planar piezoceramic transformer, ” J. Sound Vib., 277, 353–367 (2004).

    Article  Google Scholar 

  80. V. L. Karlash, “Modal analysis of a rectangular piezoceramic plate with cross polarization,” Int. Appl. Mech., 39, No.10, 1215–1220 (2003).

    Article  Google Scholar 

  81. I. F. Kirichok, “Radial vibrations and heating of a ring piezoplate under electric excitation applied to nonuniformly electroded surfaces,” Int. Appl. Mech., 37, No.3, 304–309 (2004).

    Article  Google Scholar 

  82. R. Lakes, “Shape-dependent damping in piezoelectric solids,” IEEE Trans., Sonics and Ultrasonics, SU-27, 208–213 (1980).

    Google Scholar 

  83. P. A. A. Laura, R. H. Gutierrez, and R. E. Rossi, “Transverse vibrations of circular annular plate with free edges and two intermediate concentric supports,” J. Sound Vib., 226, 1043–1047 (1999).

    Article  Google Scholar 

  84. P. A. A. Laura, R. H. Gutierrez, and R. E. Rossi, “Vibrations of a circular annular plates of cylindrical anisotropy and nonuniform thickness,” J. Sound Vib., 231, 246–252 (2000).

    Article  Google Scholar 

  85. K. M. Liew, T. Y. Ng, and B. P. Wang, “Vibration of annular plates from three-dimensional analysis, ” J. Acoust. Soc. Am., 110, 233–242 (2001).

    Article  Google Scholar 

  86. G. E. Martin, “Dielectric, elastic and piezoelectric losses in piezoelectric materials,” in: Ultrasonic Symp. Proc. Milwaukee (1974), pp. 613–617.

  87. K. Maruyama and O. Ichinomiya, “Experimental investigation of free vibrations of clamped sector plates, ” J. Sound Vib., 74, 565–573 (1981).

    Article  Google Scholar 

  88. W. P. Mason, “Electrostrictive effect in barium titanate ceramics,” Phys. Rev., 74, 1134–1147 (1948).

    Article  Google Scholar 

  89. M. A. Medick and Y.-H. Pao, “Extensional vibrations of thin rectangular plates,” J. Acoust. Soc. Am., 37, 59–65 (1965).

    Article  Google Scholar 

  90. E. C. Munk, “The equivalent electrical circuit for radial modes of a piezoelectric ceramic disk with concentric electrodes,” Phillips Res. Rep., 20, 170–189 (1965).

    Google Scholar 

  91. M. Onoe, “Frequency of edge mode of isotropic thin rectangular plate, circular disk and rod,” J. Acoust. Soc. Am., 33, 1627 L (1961).

    Google Scholar 

  92. M. Redwood, “Coupling between two modes of vibrations in piezoelectric resonator,” J. Acoust. Soc. Am., 38, 568–582 (1965).

    Article  Google Scholar 

  93. A. G. Shaw, “On the resonant vibrations of thick barium titanate disks,” J. Acoust. Soc. Am., 28, 38–50 (1956).

    Article  Google Scholar 

  94. O. Stephan, “Electric equivalent circuit of the circular piezoelectric resonators,” Chech. J. Phys., 20, No.4, 432–441 (1970).

    Google Scholar 

  95. C. V. Stephenson, “Higher modes of radial vibrations in short, hollow cylinders of barium titanate, ” J. Acoust. Soc. Am., 28, No.5, 928–929 (1956).

    Article  Google Scholar 

  96. C. A. Rosen, US Patent 439 992 1954, 29.06.54 (1954).

  97. K. S. Van Dyke, “The electric network equivalent of piezoelectric resonators,” Phys. Rev., 25, 895(A) (1925).

  98. M. Yamamoto, Y. Sasaki, A. Ochi, T. Inoue, and S. Hamamura, “Step-down piezoelectric transformer for AC-DC converters,” Jpn. J. Appl. Phys., 1.40, No.5B, 3637–3642 (2001).

    Article  Google Scholar 

  99. J. Yoo, K. Yoon, Y. Lee, S. Suh, J. Kim, and C. Yoo, “Electrical characteristics of the contour-vibration-mode piezoelectric transformer with ring/dot electrode area ratio,” Jpn. J. Appl. Phys., 39, 2680–2684 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 41, No. 7, pp. 3–46, July 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlash, V.L. Resonant Electromechanical Vibrations of Piezoelectric Plates. Int Appl Mech 41, 709–747 (2005). https://doi.org/10.1007/s10778-005-0140-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-005-0140-2

Keywords

Navigation