Skip to main content
Log in

Ultralight Dark Photon and Casimir Effect

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the influence of a dark photon on the Casimir effect and calculate the corresponding leading contribution to the Casimir energy. For expected magnitudes of the photon - dark photon mixing parameter, the influence turns out to be negligible. The plasmon dispersion relation is also not noticeably modified by the presence of a dark photon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Remember that the es charge is expressed in Heaviside-Lorentz units. If es is expressed in Gaussian units common in plasma physics, we must replace es with \(\sqrt {4\pi }e_{s}\) in the formulas.

  2. It seems, A.A. Vlasov was the first who anticipated the possibility of damping in a collisionless plasma [38,39,40].

  3. In plasma, photons acquire an effective mass [44], and therefore Aμ in a metal can have a nonzero longitudinal component.

  4. It has been experimentally demonstrated that the Casimir force between metallic films decreases significantly when the layer thickness is less than the skin depth, which for most common metals is about 10− 8 m [57]

References

  1. Fabbrichesi, M., Gabrielli, E., Lanfranchi, G.: The Physics of the Dark Photon: A Primer. Springer Nature: Cham, Berlin (2021). https://doi.org/10.1007/978-3-030-62519-1

    Book  Google Scholar 

  2. Goodsell, M., Jaeckel, J., Redondo, J., Ringwald, A.: Naturally Light Hidden Photons in LARGE Volume String Compactifications. JHEP 11, 027 (2009). https://doi.org/10.1088/1126-6708/2009/11/027

    Article  ADS  Google Scholar 

  3. Holdom, B.: Two U(1)’s and Epsilon Charge Shifts. Phys. Lett. B 166, 196–198 (1986). https://doi.org/10.1016/0370-2693(86)91377-8

    Article  ADS  Google Scholar 

  4. Filippi, A., De Napoli, M.: Searching in the dark: the hunt for the dark photon. Rev. Phys. 5, 100042 (2020). https://doi.org/10.1016/j.revip.2020.100042

    Article  Google Scholar 

  5. Dienes, K. R., Kolda, C. F., March-Russell, J.: Kinetic mixing and the supersymmetric gauge hierarchy. Nucl. Phys. B 492, 104–118 (1997). https://doi.org/10.1016/S0550-3213(97)00173-9

    Article  ADS  Google Scholar 

  6. Ruegg, H., Ruiz-Altaba, M.: The Stueckelberg field. Int. J. Mod. Phys. A 19, 3265–3348 (2004). https://doi.org/10.1142/S0217751X04019755

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Okun, L. B.: Limits of electrodynamics: paraphotons? Sov. Phys. JETP 56, 502–505 (1982). http://www.jetp.ac.ru/cgi-bin/e/index/e/56/3/p502?a=list

    ADS  Google Scholar 

  8. Jaeckel, J.: A force beyond the Standard Model - Status of the quest for hidden photons. Frascati Phys. Ser. 56, 172–192 (2012). https://arxiv.org/abs/1303.1821

    Google Scholar 

  9. Flambaum, V. V., Samsonov, I. B., Tran Tan, H. B.: Interference-assisted detection of dark photon using atomic transitions. Rev. Phys. D 99, 115019 (2019). https://doi.org/10.1103/PhysRevD.99.115019

    Article  Google Scholar 

  10. Blasone, M., Vitiello, G.: Quantum field theory of fermion mixing. Annals Phys 244, 283–311 (1995). [erratum: Annals Phys. 249 (1996), 363–364]. https://doi.org/10.1006/aphy.1995.1115

    Article  ADS  MATH  Google Scholar 

  11. Blasone, M., Capolupo, A., Romei, O., Vitiello, G.: Quantum field theory of boson mixing. Phys. Rev. D 63, 125015 (2001). https://doi.org/10.1103/PhysRevD.63.125015

    Article  ADS  Google Scholar 

  12. Ji, C. R., Mishchenko, Y.: The General theory of quantum field mixing. Phys. Rev. D 65, 096–015 (2002). https://doi.org/10.1103/PhysRevD.65.096015

    Article  Google Scholar 

  13. Lamoreaux, S. K.: Casimir forces: Still surprising after 60 years. Physics Today 60N2, 40–45 (2007). https://doi.org/10.1063/1.2711635

    Article  Google Scholar 

  14. Casimir, H. B. G.: On the Attraction Between Two Perfectly Conducting Plates. Indag. Math 10, 261–263 (1948). https://www.dwc.knaw.nl/DL/publications/PU00018547.pdf

    MATH  Google Scholar 

  15. Jaffe, R. L.: The Casimir effect and the quantum vacuum. Phys. Rev. D 72, 021301 (2005). https://doi.org/10.1103/PhysRevD.72.021301

    Article  ADS  Google Scholar 

  16. Buhmann, S. Y.: Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir-Polder and van der Waals Forces. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-32484-0

    Book  Google Scholar 

  17. Buhmann, S. Y., Welsch, D. G.: Dispersion forces in macroscopic quantum electrodynamics. Prog. Quant. Electron 31, 51–130 (2007). https://doi.org/10.1016/j.pquantelec.2007.03.001

    Article  ADS  Google Scholar 

  18. Jiang, Q.-D., Wilczek, F.: Quantum Atmospherics for Materials Diagnosis. Phys. Rev. B 99, 201104 (2019). https://doi.org/10.1103/PhysRevB.99.201104

    Article  ADS  Google Scholar 

  19. Jiang, Q.-D., Wilczek, F.: Axial Casimir Force. Phys. Rev. B 99, 165402 (2019). https://doi.org/10.1103/PhysRevB.99.165402

    Article  ADS  Google Scholar 

  20. Pálová, L., Chandra, P., Coleman, P.: The Casimir effect from a condensed matter perspective. Am. J. Phys. 77, 1055–1060 ((2009)). https://doi.org/10.1119/1.3194050

    Article  ADS  Google Scholar 

  21. Belinfante, F. J.: The Casimir effect revisited. Am. J. Phys 55, 134–138 (1987). https://doi.org/10.1119/1.15230

    Article  ADS  Google Scholar 

  22. Huang, K: Quantum Field Theory: From Operators to Path Integrals. Wiley-Interscience, New York (1998). https://doi.org/10.1002/9783527617371

    Book  MATH  Google Scholar 

  23. Harris, E.G.: A Pedestrian Approach to Quantum Field Theory. Wiley-Interscience, New York (1972)

    Google Scholar 

  24. Itzykson, C., Zuber, J.-B.: Quantum field theory. Mcgraw-hill, New York (1980)

    MATH  Google Scholar 

  25. Flanders, H.: Differentiation Under the Integral Sign. Am. Math. Monthly 80, 615–627 (1973). https://doi.org/10.2307/2319163

    Article  MathSciNet  MATH  Google Scholar 

  26. Plunien, G., Müller, B., Greiner, W.: The Casimir Effect. Phys. Rept 134, 87–193 (1986). https://doi.org/10.1016/0370-1573(86)90020-7

    Article  ADS  MathSciNet  Google Scholar 

  27. Ingold, G.-L.: Casimir effect from a scattering approach. Am. J. Phys 83, 156–162 (2015). https://doi.org/10.1119/1.4896197

    Article  ADS  Google Scholar 

  28. Milton, K. A.: The Casimir Effect: Physical Manifestations of Zero-Point Energy. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  29. Mostepanenko, V. M., Trunov, N. N.: The Casimir Effect and its Applications. Clarendon Press, Oxford (1997)

    Google Scholar 

  30. Lambrecht, A., Reynaud, S.: Casimir force between metallic mirrors. Eur. Phys. J. D 8, 309–318 (2000). https://doi.org/10.1007/s100530050041

    Article  ADS  Google Scholar 

  31. Glaister, P.: A “Flat” Function with Some Interesting Properties and an Application. Math. Gazette 75, 438–440 (1991). https://doi.org/10.2307/3618627

    Article  Google Scholar 

  32. Economou, E. N: The Physics of Solids: Essentials and Beyond. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-02069-8_4

    Book  Google Scholar 

  33. Ehrenreich, H., Cohen, M. H.: Self-Consistent Field Approach to the Many-Electron Problem. Phys. Rev. 115, 786–790 (1959). https://doi.org/10.1103/PhysRev.115.786

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Cheng, C. C., Harris, E. G.: Waves and Instabilities in a Finite Plasma. Phys. Fluids 12, 1262–1270 (1969). https://doi.org/10.1063/1.1692662

    Article  ADS  MATH  Google Scholar 

  35. Greiner, W.: Quantum Mechanics: Special Chapters. Springer, Berlin (1998). https://doi.org/10.1007/978-3-642-58847-1

    Book  MATH  Google Scholar 

  36. Landau, L. D.: On the vibrations of the electronic plasma. J. Phys. (USSR) 10, 25–34 (1946)

    MathSciNet  MATH  Google Scholar 

  37. Sagan, D.: On the physics of Landau damping. Am. J. Phys 62, 450–462 (1994). https://doi.org/10.1119/1.17547

    Article  ADS  Google Scholar 

  38. Vlasov, A. A.: Theory of Vibrational Properties of Electron Gas and Its Applications. Uch. Zapiski MGU, Fizika 75. book II, part 1 [in Russian] (1945)

  39. Rukhadze, A. A., Semenov, V. E.: On a simplified description of waves in non-collision plasmas, Izvestiya VUZ. Applied Nonlinear Dynamics, 28N5 460–464. [in Russian]. https://doi.org/10.18500/0869-6632-2020-28-5-459-464 (2020)

  40. Popov, V. Yu., Silin, V. P.: Vlasov Modes in the Theory of Ion-Acoustic Turbulence. Plasma Phys. Rep 40, 298–305 (2014). https://doi.org/10.1134/S1063780X14040060

    Article  ADS  Google Scholar 

  41. Graham, P. W., Mardon, J., Rajendran, S., Zhao, Y.: Parametrically enhanced hidden photon search. Phys. Rev. D 90, 075017 (2014). https://doi.org/10.1103/PhysRevD.90.075017

    Article  ADS  Google Scholar 

  42. Panofsky, W. K. H., Phillips, M: Classical Electricity and Magnetism. Addison-Wesley, New York (1962)

    MATH  Google Scholar 

  43. Garg, A.: Conductors in quasistatic electric fields. Am. J. Phys 76, 615–620 (2008). https://doi.org/10.1119/1.2894525

    Article  ADS  Google Scholar 

  44. Robles, P., Claro, F.: Can there be massive photons? A pedagogical glance at the origin of mass. Eur. J. Phys 33, 1217–1225 (2012). https://doi.org/10.1088/0143-0807/33/5/1217

    Article  MATH  Google Scholar 

  45. Barton, G., Dombey, N.: The Casimir Effect With Finite Mass Photons. Annals Phys 162, 231–272 (1985). https://doi.org/10.1016/0003-4916(85)90162-9

    Article  ADS  MathSciNet  Google Scholar 

  46. Bezerra, V. B., Klimchitskaya, G. L., Mostepanenko, V. M.: Higher-order conductivity corrections to the Casimir force. Phys. Rev. A 62, 014102 (2000). https://doi.org/10.1103/PhysRevA.62.014102

    Article  ADS  Google Scholar 

  47. Bordag, M., Klimchitskaya, G. L., Mohideen, U., Mostepanenko, V. M.: Advances in the Casimir Effect. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  48. Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products, 7th edn. cademic Press, Amsterdam (2007)

    MATH  Google Scholar 

  49. Bezerra, V. B., Klimchitskaya, G. L., Romero, C.: Perturbation expansion of the conductivity correction to the casimir force. Int. J. Mod.Phys. A 16, 3103–3115 (2001). https://doi.org/10.1142/S0217751X01004426

    Article  ADS  MATH  Google Scholar 

  50. Tsang, T.: Classical Electrodynamics. World Scientific, Singapore (1997)

    Google Scholar 

  51. Chiles, J., Charaev, I., Lasenby, R., et al.: First Constraints on Dark Photon Dark Matter with Superconducting Nanowire Detectors in an Optical Haloscope. arXiv:2110.01582 [hep-ex]]

  52. Andrianavalomahefa, A., et al.: [FUNK Experiment], Limits from the Funk Experiment on the Mixing Strength of Hidden-Photon Dark Matter in the Visible and Near-Ultraviolet Wavelength Range, vol. 102. https://doi.org/10.1103/PhysRevD.102.042001 (2020)

  53. Alizzi, A., Silagadze, Z. K.: Dark photon portal into mirror world. Mod. Phys. Lett. A 36(30), 150215 (2021). https://doi.org/10.1142/S0217732321502151

    Article  Google Scholar 

  54. Redondo, J., Raffelt, G.: Solar constraints on hidden photons re-visited. JCAP 08, 034 (2013). https://doi.org/10.1088/1475-7516/2013/08/034

    Article  ADS  Google Scholar 

  55. An, H., Pospelov, M., Pradler, J.: New stellar constraints on dark photons. Phys. Lett. B 725, 190–195 (2013). https://doi.org/10.1016/j.physletb.2013.07.008

    Article  ADS  MATH  Google Scholar 

  56. Blasone, M., Luciano, G. G., Petruzziello, L., Smaldone, L.: Casimir effect for mixed fields. Phys. Lett. B 786, 278–282 (2018). https://doi.org/10.1016/j.physletb.2018.10.004

    Article  ADS  MATH  Google Scholar 

  57. Lisanti, M., Iannuzzi, D., Capasso, F.: Observation of the skin-depth effect on the Casimir force between metallic surfaces. Proc. Natl Acad. Sci. USA 102, 11989–11992 (2005). https://doi.org/10.1073/pnas.0505614102

    Article  ADS  Google Scholar 

  58. Intravaia, F., Lambrecht, A.: Surface Plasmon the Casimir Energy and Modes. Phys. Rev. Lett 94, 110404 (2005). https://doi.org/10.1103/PhysRevLett.94.110404

    Article  ADS  Google Scholar 

  59. Farina, C.: The Casimir effect: Some aspects. Braz. J. Phys 36, 1137–1149 (2006). https://doi.org/10.1590/S0103-97332006000700006

    Article  ADS  Google Scholar 

  60. Mattioli, L., Frassino, A. M., Panella, O.: Casimir-Polder interactions with massive photons: implications for BSM physics. Phys. Rev. D 100, 116–023 (2019). https://doi.org/10.1103/PhysRevD.100.116023

    Article  Google Scholar 

  61. Butzer, P. L., Ferreira, P. J. S. G., Schmeisser, G., Stens, R. L.: The Summation Formulae of Euler-Maclaurin, Abel-Plana, Poisson, and their Interconnections with the Approximate Sampling Formula of Signal Analysis. Results Math 59, 359–400 (2011). https://doi.org/10.1007/s00025-010-0083-8

    Article  MathSciNet  MATH  Google Scholar 

  62. Hardy, G. H.: Divergent Series. Oxford University Press, Oxford (1949)

    MATH  Google Scholar 

  63. Dowling, J. P.: The Mathematics of the Casimir Effect. Math. Magazine 62, 324–331 (1989). https://doi.org/10.2307/2689486

    Article  MathSciNet  Google Scholar 

  64. Apostol, T. M.: An Elementary View of Euler’s Summation Formula. Am. Math. Monthly 106, 409–418 (1999). https://doi.org/10.2307/2589145

    Article  MathSciNet  MATH  Google Scholar 

  65. Roman, I.: An Euler Summation Formula. Am. Math. Monthly 43, 9–21 (1936). https://doi.org/10.2307/2301097

    Article  MathSciNet  MATH  Google Scholar 

  66. Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002). https://doi.org/10.1007/978-1-4613-0071-7

    Book  MATH  Google Scholar 

  67. Sugihara, M.: Justification of a Formal Derivation of the Euler-Maclaurin Summation Formula. In: Saitoh, S., Hayashi, N., Yamamoto, M. (eds.) Analytic Extension Formulas and their Applications. International Society for Analysis, Applications and Computation. https://doi.org/10.1007/978-1-4757-3298-6_14, vol. 9, pp 251–261. Springer, Boston (2001)

Download references

Acknowledgments

We would like to thank Carlo Beenakker and the MathOverflow user with the nickname dan_fulea for suggesting the ideas that were used in the Appendix ??. We also thank an anonymous reviewer for constructive comments. The work is supported by the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. K. Silagadze.

Ethics declarations

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Euler-Maclaurin Summation Formula

The Euler-Maclaurin summation formula was originally obtained in 1782 by Euler and independently and almost simultaneously by Maclaurin [61]. A rigorous treatment of this very important tool of numerical analysis with diverse applications can be found, for example, in [62]. There exist several elementary derivations [63,64,65] of this remarkable formula. However, we prefer a formal heuristic derivation [66], which in the simplest way demystifies the appearance of Bernoulli numbers in it. Note that using Banach spaces of entire functions of exponential type, the formal derivation of the Euler-Maclaurin formula can be made mathematically rigorous [67].

Let \(\hat D=\frac {d}{dx}\) be a differential operator, so that

$$ \hat D f(x)=\frac{d f}{dx}, f(x+n)=e^{n\hat D}f(x), $$
(A.1)

where the second equation is a formal expression of the Taylor formula. Then

$$ \sum\limits_{n=0}^{N-1}f(x+n)=\left (\sum\limits_{n=0}^{N-1} e^{n\hat D}\right )f(x)= \frac{e^{N\hat D}-1}{e^{n\hat D}-1}f(x)=\frac{1}{e^{n\hat D}-1}\left[f(x+N)-f(x) \right ]. $$
(A.2)

The Bernoulli numbers Bn are defined by the power series expansion of their exponential generating function:

$$ \begin{aligned} &\frac{x}{e^{x}-1}=\sum\limits_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}, B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, \\ &B_{3}=0, B_{4}=-\frac{1}{30}, B_{5}=0, B_{6}=\frac{1}{42} \ldots \end{aligned} $$
(A.3)

Comparing (A.3) and (A.2), we can write

$$ \sum\limits_{n=0}^{N-1}f(x+n)=\left (\hat D^{-1}+\sum\limits_{n=1}^{\infty} \frac{B_{n}}{n!} \hat D^{n-1}\right )\left [f(x+N)-f(x)\right ]. $$
(A.4)

On the other hand,

$$ {\int\limits_{0}^{N}} f(x+t) dt={\int\limits_{0}^{N}} e^{t\hat D}f(x) dt= \hat D^{-1}\left (e^{N\hat D}-1\right )f(x)=\hat D^{-1}\left [f(x+N)- f(x)\right ]. $$
(A.5)

Therefore

$$ \sum\limits_{n=0}^{N-1}f(x+n)-{\int\limits_{0}^{N}} f(x+t) dt=\sum\limits_{n=1}^{\infty} \frac{B_{n}}{n!} \hat D^{n-1}\left [f(x+N)-f(x)\right ]. $$
(A.6)

When \(N\to \infty \), for convergence we need \(\hat D^{k}f(\infty )=0\), k = 0, 1,… and (A.6) in this limit takes the form

$$ \sum\limits_{n=0}^{\infty}f(x+n)-\int\limits_{0}^{\infty} f(x+t) dt= -\sum\limits_{n=1}^{\infty} \frac{B_{n}}{n!} \hat D^{n-1} f(x)=\frac{1}{2} f(x)- \sum\limits_{n=2}^{\infty} \frac{B_{n}}{n!} \frac{d^{n-1}f(x)}{dx^{n-1}} . $$
(A.7)

The form of the Euler-Maclaurin Summation Formula used in the main text corresponds to x = 0 in (A.7).

Appendix B: Evaluation of the Integrals

First we evaluate the integral from entry 3.411.1 in [48]. From the definition of the gamma function

$$ {\Gamma}(\nu)=\int\limits_{0}^{\infty} x^{\nu-1}e^{-x}dx, $$
(B.1)

and using

$$ \frac{1}{1-e^{-x}}=\sum\limits_{k=0}^{\infty} e^{-kx}, $$
(B.2)

we get after interchanging the orders of the integration and summation

$$ \begin{array}{@{}rcl@{}} \int\limits_{0}^{\infty} \frac{x^{\nu-1}}{e^{x}-1}dx&=&\int\limits_{0}^{\infty} \frac{x^{\nu-1}e^{-x}}{1-e^{-x}}dx=\int\limits_{0}^{\infty}\sum\limits_{k=0}^{\infty} x^{\nu-1}e^{-(k+1)x}dx \\ &=& \sum\limits_{k=0}^{\infty}\int\limits_{0}^{\infty} x^{\nu-1}e^{-(k+1)x}dx={\Gamma}(\nu)\sum\limits_{k=0}^{\infty} \frac{1} {(k+1)^{n}}={\Gamma}(\nu) \zeta(\nu). \end{array} $$
(B.3)

Now, if we differentiate the just proved identity

$$ \zeta(\nu)=\frac{1}{\Gamma(\nu)}\int\limits_{0}^{\infty} \frac{x^{\nu-1}}{e^{x}-1} dx $$
(B.4)

with respect to ν and take into account \(\frac {dx^{\nu -1}}{d\nu }=\ln {x} x^{\nu -1}\), we get

$$ \begin{array}{@{}rcl@{}} \zeta^{\prime}(\nu)&=&\frac{1}{\Gamma(\nu)}\int\limits_{0}^{\infty}\frac{x^{\nu-1} \ln{x}}{e^{x}-1}dx-\frac{{\Gamma}^{\prime}(\nu)}{{\Gamma}^{2}(\nu)} \int\limits_{0}^{\infty}\frac{x^{\nu-1}}{e^{x}-1}dx \\&=& \frac{1}{\Gamma(\nu)}\int\limits_{0}^{\infty}\frac{x^{\nu-1} \ln{x}}{e^{x}-1}dx-\psi(\nu) \zeta(\nu), \end{array} $$
(B.5)

where \(\psi (\nu )={\Gamma }^{\prime }(\nu )/{\Gamma }(\nu )\). Therefore,

$$ \int\limits_{0}^{\infty}\frac{x^{\nu-1} \ln{x}}{e^{x}-1}dx= {\Gamma}(\nu) \zeta^{\prime}(\nu)+\psi(\nu) {\Gamma}(\nu) \zeta(\nu). $$
(B.6)

Note that from \(\psi (\nu +1)=\frac {1}{\nu }+\psi (\nu )\) and ψ(1) = −γ, it follows that

$$ \psi(3)=\frac{1}{2}+1+\psi(1)=\frac{1}{2}\left (3-2\gamma\right). $$
(B.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizzi, A., Silagadze, Z.K. Ultralight Dark Photon and Casimir Effect. Int J Theor Phys 61, 43 (2022). https://doi.org/10.1007/s10773-022-05034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05034-9

Keywords

Navigation