Skip to main content
Log in

Correlation Property of Multipartite Quantum Image

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Inspired on the classical Bayesian method also called mutual information, by generalizing the classical case to quantum approach to study the multipartite correlation in quantum image by using the flexible representation of quantum images (FRQI) method. Some important entanglement measures are calculated including von Neumann entropy, conditional entropy, joint entropy, discord and mutual information. We take two typical images of size 2 × 2 pixels and 8 × 8 pixels and study their entanglement measures from different classical and quantum point of view. The quantum image of size 2 × 2 is studied under the change of color for one pixel, but the quantum image of 8 × 8 is treated under translation transform. We find that the classical joint entropy remains invariant under the change of color for one pixel but the quantum entropy is sensitive to such change. It is shown that the total correlation IT could arrive to the double amount of the classical joint entropy. The discord in the classical case is zero, but it varies much in the quantum case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. These two measures are also used in classical image fusion that is an important application in medical physics [22, 23, 26].

  2. We often use S and H denote the quantum and classical entropy, respectively.

  3. It should be emphasized that the entropy S is calculated by considering the binary logarithm (the base is taken 2 but not natural number e), and the units of entropy S are expressed in bits.

References

  1. Phoenix, S.J.D.: Quantum information as a measure of multipartite correlation. Quantum Inf. Process 14(10), 3723–3738 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21 (6-7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  3. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. pages 124–134, Santa Fe, NM, USA. IEEE Comput. Soc. Press (1994)

  4. Grover, L.K.: A fast quantum mechanical algorithm for database search, pp 212–219. ACM Press, Philadelphia (1996)

    MATH  Google Scholar 

  5. Dong, D., Chen, C., Chu, J., Tarn, T.J.: Robust quantum-inspired reinforcement learning for robot navigation. IEEE/ASME Trans. Mechatron. 17(1), 86–97 (2012)

    Article  Google Scholar 

  6. Gupta, S., Mohanta, S., Chakraborty, M., Ghosh, S.: Quantum machine learning-using quantum computation in artificial intelligence and deep neural networks: Quantum computation and machine learning in artificial intelligence, pp 268–274. IEEE, Bangkok (2017)

    Google Scholar 

  7. Benioff, P.: Quantum robots and environments. Phys. Rev. A 58(2), 893–904 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. Carleo, G., Troyer, M.: Solving the quantum many-body problem with artificial neural networks. Science 355(6325), 602–606 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chen, F., Lu, F., Jiang, B., Tao, G.: Adaptive compensation control of the quadrotor helicopter using quantum information technology and disturbance observer. J. Franklin Inst. 351(1), 442–455 (2014)

    Article  MATH  Google Scholar 

  10. Ulyanov, S.V., Reshetnikov, A.G.: Cognitive intelligent robust control system based on quantum fuzzy inference for robotics and mechatronics, pp 000255–000260. IEEE, Subotica (2017)

    Google Scholar 

  11. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Vlasov, A.Y.: Quantum computations and images recognition. arXiv:quant-ph/9703010 (1997)

  13. Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics page, pp. 137, Orlando, FL (2003)

  14. Latorre, J.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005)

  15. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: A framework for representing and producing movies on quantum computERS. International Journal of Quantum Information 09(06), 1459–1497 (2011)

    Article  MATH  Google Scholar 

  17. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inform. Sci. 186(1), 126–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yan, F., Iliyasu, A.M., Fatichah, C., Tangel, M.L., Betancourt, J.P., Dong, F., Hirota, K.: Quantum image searching based on probability distributions. Journal of Quantum Information Science 02(03), 55–60 (2012)

    Article  Google Scholar 

  19. Yan, F., Iliyasu, A.M., Le, P.Q., Sun, B., Dong, F., Hirota, K.: A parallel comparison of multiple pairs of images on quantum computers. Int. J. Innov. Comput. Appl. 5(4), 199 (2013)

    Article  Google Scholar 

  20. Sazim, S., Agrawal, P.: Quantum mutual information and quantumness vectors for multi-qubit systems. arXiv:1607.05155 [quant-ph] (2016)

  21. Guzman, L.: Extension de cantidades clásicas a la teoría de la información cuánticá. Universidad de los Andes, Ph.d thesis (2011)

    Google Scholar 

  22. Calvante, A., Wa, S.: Registration and fusion with mutual information for information-preserved multimodal visualization. University of Campinas, Tesis de maestria (2014)

    Google Scholar 

  23. Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration. Phys. Med. Biol. 46(3), R1–R45 (2001)

    Article  ADS  Google Scholar 

  24. Maes, F., Vandermeulen, D., Suetens, P.: Medical image registration using mutual information. Proc. IEEE 91(10), 1699–1722 (2003)

    Article  Google Scholar 

  25. Lu, X., Zhang, S., He, S., Chen, Y.: Mutual information-based multimodal image registration using a novel joint histogram estimation technique. J. Indian Soc. Remote Sens. 32(3), 202–209 (2008)

    Google Scholar 

  26. Gupta, S., Ramesh, K.P., Blasch, E.P.: Mutual information metric evaluation for PET/MRI image fusion, pp 305–311. IEEE, Dayton (2008)

    Google Scholar 

  27. Eldar, Y. C.: Quantum signal processing. Tesis de doctorado, MIT Eldar (2001)

  28. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84(4), 1655–707 (2012)

    Article  ADS  Google Scholar 

  29. Rully, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84(4), 042109 (2011)

    Article  ADS  Google Scholar 

  30. Okrasa, M., Walczak, Z.: Quantum discord and multipartite correlations. Europhys. Lett. 96(6), 60003 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by project 20190234-SIP-IPN, COFAA-IPN, Mexico and partially by the CONACYT project under grant No. 288856-CB-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hai Dong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez, M.A.M., Sun, GH. & Dong, SH. Correlation Property of Multipartite Quantum Image. Int J Theor Phys 58, 3773–3796 (2019). https://doi.org/10.1007/s10773-019-04247-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04247-9

Keywords

Navigation