Skip to main content
Log in

Quantum Structures Without Group-Valued Measures

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum structures with small dimensions of state spaces are not only mathematical curiosities. They enriched the mathematical theory by new tools. We have significantly optimized some of these constructions. Related questions have been studied also in graph theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This example was already published in [13].

  2. An element a of an EA is sharp if aa = 0.

  3. The example from [37] is the same, but the numbers were corrected by M. Pavičić in [23].

References

  1. Beran, L.: Orthomodular Lattices. Algebraic Approach. Academia, Praha (1984)

    MATH  Google Scholar 

  2. Dichtl, M.: Astroids and pastings. Algebra Universalis 18, 380–385 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer/Dordrecht, Ister/Bratislava (2000)

    Book  MATH  Google Scholar 

  4. Greechie, R.J.: Orthomodular lattices admitting no states. J. Combin. Theory Ser. A 10, 119–132 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gudder, S.P.: Quantum Probability. Academic Press (1988)

  6. Hamhalter, J.: Quantum Measure Theory. Kluwer, Dordrecht (2003)

    Book  MATH  Google Scholar 

  7. Hamhalter, J., Navara, M., Pták, P.: States on orthoalgebras. Internat. J. Theoret. Phys. 34(8), 1439–1465 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Harding, J., Navara, M.: Embeddings into orthomodular lattices with given centers, state spaces and automorphism groups. Order 17(3), 239–254 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jenča, G.: The block structure of complete lattice ordered effect algebras. J. Aust. Math. Soc. 83, 181–216 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kalmbach, G.: Orthomodular Lattices. Academic Press, London (1983)

    MATH  Google Scholar 

  11. Lazebnik, F., Verstraëte, J.: On hypergraphs of girth five. Electr. J. Comb. 10, R25 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mayet, R.: Personal communication (1993)

  13. Navara, M.: State space properties of finite logics. Czechoslovak Math. J. 37(112), 188–196 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Navara, M.: Independence of automorphism group, center and state space of quantum logics. Internat. J. Theoret. Phys. 31, 925–935 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Navara, M.: Descriptions of state spaces of orthomodular lattices. Math. Bohemica 117, 305–313 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Navara, M.: An orthomodular lattice admitting no group-valued measure. Proc. Amer. Math. Soc. 122, 7–12 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Navara, M.: Two descriptions of state spaces of orthomodular structures. Internat. J. Theoret. Phys. 38(12), 3163–3178 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Navara, M.: State spaces of quantum structures. Rend. Istit. Mat. Univ. Trieste 31(Suppl. 1), 143–201 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Navara, M.: Small quantum structures with small state spaces. Internat. J. Theoret. Phys. 47(1), 36–43 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Navara, M.: Existence of states on quantum structures. Information Sci. 179, 508–514 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Navara, M., Pták, P., Rogalewicz, V.: Enlargements of quantum logics. Pacific J. Math. 135, 361–369 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ovchinnikov, P.G.: On homogeneous finite Greechie’s logics permitting two-valued state. In: Teor. Funktsii, Prilozh. i Smezhnye Voprosy, pp. 167–168. Kazansk. Gos. Univ., Kazan (1999)

  23. Pavičić, M.: Exhaustive generation of orthomodular lattices with exactly one nonquantum state. Rep. Math. Phys. 64, 417–428 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Pavičić, M., McKay, B.D., Megill, N.D., Fresl, K.: Graph approach to quantum systems. J. Math. Phys. 51(102103), 1–31 (2010). https://doi.org/10.1063/1.3491766

    Article  MathSciNet  MATH  Google Scholar 

  25. Pták, P.: Exotic logics. Colloquium Math. 54, 1–7 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  27. Ray-Chaudhuri, D., Wilson, R.: The existence of resolvable block designs. Survey of combinatorial theory. In: Proc. Internat. Sympos., pp. 361–375. North-Holland (1973)

  28. Riečanová, Z.: Generalization of blocks for D-lattices and lattice ordered effect algebras. Internat. J. Theoret. Phys. 39, 231–237 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Riečanová, Z.: Proper effect algebras admitting no states. Internat. J. Theoret. Phys. 40, 1683–1691 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Riečanová, Z.: Smearings of states defined on sharp elements onto effect algebras. Internat. J. Theoret. Phys. 41, 1511–1524 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Riečanová, Z.: The existence of states on every Archimedean atomic lattice effect algebra with at most five blocks. Kybernetika 44, 430–440 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Shultz, F.W.: A characterization of state spaces of orthomodular lattices. J. Comb. Theory A 17, 317–328 (1974)

    Article  MathSciNet  Google Scholar 

  33. Sultanbekov, F.F.: On (3,3)-homogeneous Greechie orthomodular posets. Internat. J. Theoret. Phys. 44, 957–963 (2002). https://doi.org/10.1007/s10773-005-7072-9. arXiv:math.LO/0211311

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Sultanbekov, F. F.: Boolean Algebras and Quantum Logics. Kazan State University, Kazan (2007)

    Google Scholar 

  35. Sultanbekov, F.F.: Automorphism groups of small (3,3)-homogeneous logics. Internat. J. Theoret. Phys. 49, 3271–3278 (2010). https://doi.org/10.1007/s10773-010-0439-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Sultanbekov, F.F.: (3,3)-homogeneous quantum logics with 18 atoms. I. Russian Math. (Izv. vuzov. Matematika) 56, 62–66 (2012). https://doi.org/10.3103/S1066369X12110072

    Article  MathSciNet  MATH  Google Scholar 

  37. Weber, H.: There are orthomodular lattices without non-trivial group valued states; a computer-based construction. J. Math. Anal. Appl. 183, 89–94 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank to Mladen Pavičić and Foat F. Sultanbekov for their valuable remarks. The work was supported from European Regional Development Fund-Project “Center for Advanced Applied Science” (No. CZ.02.1.01/0.0/0.0/16_/0000778).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Navara.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to the memory of P.G. Ovchinnikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navara, M., Voráček, V. Quantum Structures Without Group-Valued Measures. Int J Theor Phys 60, 687–695 (2021). https://doi.org/10.1007/s10773-019-04058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04058-y

Keywords

Navigation