Skip to main content
Log in

Blind Quantum Signature with Blind Quantum Computation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client’s privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. William, S.: Cryptography and Network Security: Principles and Practice, 2nd edn., pp 67–68. Prentice Hall, New Jersey (2003)

    Google Scholar 

  2. Cao, Z.J., Liu, M.L.: Classification of signature-only signature models. Sci. China Ser. F-Inf. Sci. 51, 1083–1095 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zeng, G.H., Keitel, C.K.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  ADS  Google Scholar 

  4. Chaum, D.: Blind signature for untraceable payments. Advances in cryptology, proceeding of Cryptology 82, 199–203 (1982). New York

    Google Scholar 

  5. Zeng, G., Lee, M., Guo, Y., He, G.: Continuous variable quantum signature algorithm. Int. J. Quantum Inf. 5(4), 553–573 (2007)

    Article  MATH  Google Scholar 

  6. Wang, Y., Xu, K., Guo, Y.: A chaos-based arbitrated quantum signature scheme in quantum crypotosystem. Int. J. Theor. Phys. 53(1), 28–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Siavash, K., Ali, Z.: A sessional blind signature based on quantum cryptography. Quant. Inf. Process 13, 121C130 (2013)

    MathSciNet  Google Scholar 

  8. Wang, T.Y., Cai, X.Q., Zhang, R.L.: Security of a sessional blind signature based on quantum cryptograph. Quant. Inf. Process 13, 1677–1685 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. ACM, pp 212–219 (1996)

  10. Arrighi, P., Salvail, L.: Blind quantum computation. International Journal of Quantum Information 4(05), 883–898 (2006)

    Article  MATH  Google Scholar 

  11. Childs, A.M., Inf, Secure assisted quantum computation. Quantum Comput. 5, 456 (2005)

    Google Scholar 

  12. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum conputation. Proc. of the 50th Annual IEEE Sympo. on Found. of Comput. Sci., 517 (2009)

  13. Guo, Y., Zhao, Y.: High-efficient quantum secret sharing based on the Chinese remainder theorem via the orbital angular momentum entanglement analysis. Quantum Inf. Process 12(2), 1125–1139 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Li, Q., Chan, W.H., Wu, C.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89, 040302 (2014)

    Article  ADS  Google Scholar 

  15. Morimae, T., Fujii, K.: Blind topological measurement-based quantum computation. Nat. Commun. 3, 1036 (2012)

    Article  ADS  Google Scholar 

  16. Mantri, A., Pérez-Delgado, C.A., Fitzsimons, J.F.: Optimal blind quantum computation. Phys. Rev. Lett. 111, 230502 (2013)

    Article  ADS  Google Scholar 

  17. Morimae, T., Fujii, K.: Blind quantum computation protocol in which Alice only makes measurements. Phys. Rev. A 87, 050301 (2013)

    Article  ADS  Google Scholar 

  18. Morimae, T.: Verification for measurement-only blind quantum computing. Phys. Rev. A 89, 060302 (2014)

    Article  ADS  Google Scholar 

  19. Takeuchi, Y., Fujii, K., Ikuta, R.: Blind quantum computation over a collective-noise channel. Phys. Rev. A 93, 052307 (2016)

    Article  ADS  Google Scholar 

  20. Barz, S., Kashefi, E., Broadbent, A.: Demonstration of blind quantum computing. Science 335, 303–308 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Greganti, C., Roehsner, M.C., Barz, S.: Demonstration of measurement-only blind quantum computing. New J. Phys. 18(1), 013020 (2016)

    Article  ADS  Google Scholar 

  22. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, 61572529).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Shi, R. & Guo, Y. Blind Quantum Signature with Blind Quantum Computation. Int J Theor Phys 56, 1108–1115 (2017). https://doi.org/10.1007/s10773-016-3252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3252-z

Keywords

Navigation