Skip to main content
Log in

Vacuum Energy in Two Dimensional Box Through the Krein Quantization

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work we reexamine the Casimir effect in which the vacuum expectation value of quantum fields is calculated over a so-called Krein space. This method has already been successfully applied to study Casimir effect on non-trivial topologies and also the covariance problem in the massless minimally coupled scalar field in de Sitter space-time. It is shown that within this method, no infinite term appears in the computation of the vacuum expectation value of energy-momentum tensor. We investigate the behavior of the Krein quantization for a scalar field in a box satisfying the Dirichlet boundary condition. We show that one can recover the usual theory with the exception that the vacuum energy of the free theory is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As a matter of fact one can consider other boundary conditions say as the Neumann boundary condition or Robin boundary condition. The first one is obtained by demanding the following constraint on the normal derivative of the fields

    $ \frac {\partial {\Phi }_{J}(\vec {x})}{\partial n}|_{S}=0,$
    (4)

    namely it should be vanished on the boundary surface vanishes. In principle this kind of constraint implies that the momentum flux of the field through the boundary vanishes. On the other hand a combination of the Dirichlet and Neumann boundary conditions leads to a new boundary condition named as the Robin boundary condition and is defined by

    $[u{\Phi }_{J}(\vec {x})+\frac {\partial {\Phi }_{J}(\vec {x})}{\partial n}]|_{S}=0,$
    (5)

    where u is some parameter or a function of the radius vector.

References

  1. Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    MATH  Google Scholar 

  2. Lambrecht, A.: The Casimir effect: a force from nothing, Physics World (2002)

  3. Stokes, A., Bennett, R.: The Casimir effect for fields with arbitrary spin. Ann. Phys. 360, 246 (2015)

    Article  MathSciNet  Google Scholar 

  4. Gazeau, J.P., Renaud, J., Takook, M.V.: Gupta-Bleuler quantization for minimally coupled scalar fields in de Sitter space. Class. Quant. Grav. 17, 1415 (2000). arXiv:gr-qc/9904023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Khosravi, H., Naseri, M., Rouhani, S., Takook, M.V.: Casimir effect in Krein space quantization. Phys. Lett. B 640, 48 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Pejhana, H., Tanhayi, M.R., Takook, M.V.: Casimir effect for a scalar field via Krein quantization. Ann. Phys. 341, 195 (2014). Hasani, M., Tavakoli, F., Tanhayi, M.R.: Radial Casimir effect in a sphere through the Krein space quantization. Mod. Phys. Lett. A 27, 1250096 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Lambiase, G., Nesterenko, V.V.: Quark mass correction to the string potential. Phys. Rev. D 54, 6387 (1996)

    Article  ADS  Google Scholar 

  8. Leseduarte, S., Romeo, A.: Complete zeta-function approach to the electromagnetic Casimir effect for spheres and circles. Ann. Phys. 250, 165 (1978)

    MathSciNet  MATH  Google Scholar 

  9. Schwinger, J., DeRaad, L.L., Milton, K.A.: Casimir effect in dielectrics. Ann. Phys. 115(1), 1–23 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  10. Deutch, D., Candelas, P.: Boundary effects in quantum field theory. Phys. Rev. D 20, 3063 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bordag, M., Klimchtskaja, G.L., Mogideen, U., Mostepanenko, V.M.: Advances in the Casimir effect. Oxford University Press, Oxford (2009)

    Book  Google Scholar 

  12. Dirac, P.A.M.: The physical interpretation of quantum mechanics. Proc. Roy. Soc. A 180, 1 (1942)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Gupta, S.N.: Theory of longitudinal photons in quantum electrodynamics. Proc. Phys. Soc. Sect. A 63, 681 (1950). Bleuler, K.: Eine neue Methode zur Behandlung der longitudinalen und skalaren Photonen. Helv. Phys. Acta 23, 567 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Refaei, A., Takook, M.V.: QED effective action in Krein space quantization. Phys. Lett. B 704, 326 (2011)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

M.R.T would like to thank M.V. Takook for his useful comments and hints on the earlier version of this paper. This work has been supported financially by Islamic Azad University Central Tehran Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Tanhayi.

Appendix

Appendix

1.1 Some Technical Details on Computation of the Casimir Effect

In (22) by separating the term with n = 0, one obtains

$$ \sum\limits_{n=0}^{\infty} f(n)=\frac{m}{2}+E_{0}(a,m) $$
(38)

In a similar manner, taking into account the change of variable a k = π t, one finds

$$ {\int}_{0}^{\infty} f(t)\,dt=E_{0}(a,m)=\frac{\pi}{2a}{\int}_{0}^{\infty} dt\,(A^{2}+t^{2})^{\frac{1}{2}}, $$
(39)

where \( A\equiv \frac {ma}{\pi } \). Then the Casimir energy is found from the relation (22) as follows

$$ E^{Cas}(a,m)=-\frac{m}{4}+i\frac{\pi}{2a}{\int}_{0}^{\infty}\frac{dt}{e^{2\pi t}-1}\left[G_{A}(it)-G_{A}(-it)\right]. $$
(40)

Here, the function G A (t) is defined by

$$ G_{A}(t)\equiv(A^{2}+t^{2})^{\frac{1}{2}},\qquad A\equiv\frac{ma}{\pi}. $$
(41)

To compute G A (i t)−G A (−i t) with the substitution tε±i t and taking ε→0+ we find

$$\begin{array}{@{}rcl@{}} G_{A}(it)-G_{A}(-it)&=&\sqrt{A^{2}+(\varepsilon+it)^{2}}-\sqrt{A^{2}+(\varepsilon-it)^{2}}\\ &=&\sqrt{A^{2}-t^{2}+\varepsilon^{2}+2i\varepsilon t}-\sqrt{A^{2}-t^{2}+\varepsilon^{2}-2i\varepsilon t}, \end{array} $$
(42)

When t > A

$$ G_{A}(it)-G_{A}(-it)=2i\sqrt{t^{2}-A^{2}}\theta(t-A) $$
(43)

where θ(x) is the step function. Substituting (43) in (40), one arrives at

$$ E^{Cas}(a,m)=-\frac{m}{4}-\frac{\pi}{a}{\int}_{A}^{\infty}\frac{\sqrt{t^{2}-A^{2}}}{e^{2\pi t}-1}\,dt $$
(44)

where 2π ty and π A = m aμ (the latter parameter has the meaning of a dimensionless mass). The first contribution on the right-hand side of (44) is associated with the total energy of the boundary points. It does not depend on a and hence does not contribute to the Casimir force:

$$ E^{Cas}(a,m)=-\frac{m}{4}-\frac{1}{4\pi a}{\int}_{2\mu}^{\infty}\frac{\sqrt{y^{2}-4\mu^{2}}}{e^{y}-1}\,dy. $$
(45)

For μ = 0 (m = 0), (45) leads to (23). In the rest of this appendix we collect some details of obtaining (29). First, we apply the Abel-Plana to perform the summation over , with the result

$$\begin{array}{@{}rcl@{}} &&\bullet\sum\limits_{\ell=0}^{\infty} f(\ell)=\frac{\pi}{2}\sum\limits_{n=1}^{\infty}\frac{n}{a}+E(a,b)\\ &&\bullet{\int}_{0}^{\infty} f(t)\,dt=\frac{b}{2\pi}\sum\limits_{n=1}^{\infty}{\int}_{0}^{\infty} dk_{\ell}\,\left( k_n^2+k_{\ell}^{2}\right)^{\frac{1}{2}},\quad bk_{\ell}=\pi t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\ &&\mspace{103mu}=\frac{\pi}{2}\sum\limits_{n=1}^{\infty}{\int}_{0}^{\infty} dt\,\sqrt{\left( \frac{n}{a}\right)^2+\left( \frac{t}{b}\right)^2} \end{array} $$
$$\begin{array}{@{}rcl@{}} &&\bullet\,\frac{1}{2}f(0)=\frac{\pi}{2}\sum\limits_{n=1}^{\infty}\frac{n}{2a}\\ &&\bullet, i{\int}_0^{\infty}\frac{f(it)-f(-it)}{e^{2\pi t}-1}\,dt=i\frac{\pi}{2}\sum\limits_{n=1}^{\infty} dt\,\frac{M(it)-M(-it)}{e^{2\pi t}-1},\qquad M(t)\equiv\sqrt{\left( \frac{n}{a}\right)^2+\left( \frac{t}{b}\right)^2}\\ &&\mspace{205mu}=\frac{\pi}{2}\sum\limits_{n=1}^{\infty}{\int}_{\frac{bn}{a}}^{\infty} dt\,\frac{2i\sqrt{\left( \frac{t}{b}\right)^2-\left( \frac{n}{a}\right)^2}}{e^{2\pi t}-1} \end{array} $$
$$ E(a,b)=\frac{\pi}{2}\sum\limits_{n=1}^{\infty}\left[-\frac{n}{2a}+{\int}_{0}^{\infty} dt\,\sqrt{\left( \frac{n}{a}\right)^{2}+\left( \frac{t}{b}\right)^{2}}-2{\int}_{\frac{bn}{a}}^{\infty} dt\,\frac{2i\sqrt{\left( \frac{t}{b}\right)^{2}-\left( \frac{n}{a}\right)^{2}}}{e^{2\pi t}-1}\right] $$
(46)

Note that in the last integral on the right-hand side of (46), we have defined \(u\equiv \frac {ta}{nb}\). We apply the Abel-Plana (22) to perform the first two summations over n on the right-hand side of above equation:

First summation

$$\begin{array}{@{}rcl@{}} &&\bullet{\int}_0^{\infty} f(x)\,dx=-\frac{1}{2a}{\int}_0^{\infty} t\,dt\\ &&\bullet\,i{\int}_{0}^{\infty} dt\,\frac{f(it)-f(-it)}{e^{2\pi t}-1}=-\frac{i}{2a}{\int}_{0}^{\infty} dt\,\frac{2it}{e^{2\pi t}-1}=\frac{1}{24a}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \end{array} $$
$$ {\kern50pt}-\frac{1}{2a}{\sum}_{n=1}^{\infty} n=-\frac{1}{2a}{\int}_{0}^{\infty} t\,dt+\frac{1}{24a} $$
(47)

Second summation

$$\begin{array}{@{}rcl@{}} &&\bullet\,\frac{1}{2}f(0)=\frac{1}{2b}{\int}_{0}^{\infty} t\,dt\\ &&\bullet{\int}_{0}^{\infty} f(\upsilon)\,d\upsilon={\int}_{0}^{\infty} dt{\int}_{0}^{\infty} d\upsilon\,\sqrt{\left( \frac{\upsilon}{a}\right)^2+\left( \frac{t}{b}\right)^2}\\ &&\bullet\,i{\int}_{0}^{\infty} d\upsilon\,\frac{f(i\upsilon)-f(-i\upsilon)}{e^{2\pi\upsilon}-1}=\frac{i}{b}{\int}_{0}^{\infty} dt{\int}_{0}^{\infty} d\upsilon\,\frac{M^{\prime}(i\upsilon)-M^{\prime}(-i\upsilon)}{e^{2\pi\upsilon}-1},\qquad M^{\prime}(\upsilon)\equiv\sqrt{\left( \frac{\upsilon b}{a}\right)^2+t^2}\\ &&\mspace{215mu}=-\frac{b}{8\pi^2a^2}\zeta_R(3) \end{array} $$
$$ \sum\limits_{n=1}^{\infty}{\int}_{0}^{\infty} dt\,\sqrt{\left( \frac{n}{a}\right)^{2}+\left( \frac{t}{b}\right)^{2}}=-\frac{1}{2b}{\int}_{0}^{\infty} t\,dt+{\int}_{0}^{\infty} dt{\int}_{0}^{\infty} d\upsilon\,\sqrt{\left( \frac{\upsilon}{a}\right)^{2}+\left( \frac{t}{b}\right)^{2}}-\frac{b}{8\pi^{2}a^{2}}\zeta_{R}(3) $$
(48)

Now we substitute (47) and (48) into (46).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffari, A., Karimaghaee, S. & Tanhayi, M.R. Vacuum Energy in Two Dimensional Box Through the Krein Quantization. Int J Theor Phys 56, 887–897 (2017). https://doi.org/10.1007/s10773-016-3231-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3231-4

Keywords

Navigation