Skip to main content
Log in

Graph State-Based Quantum Secret Sharing with the Chinese Remainder Theorem

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum secret sharing (QSS) is a significant quantum cryptography technology in the literature. Dividing an initial secret into several sub-secrets which are then transferred to other legal participants so that it can be securely recovered in a collaboration fashion. In this paper, we develop a quantum route selection based on the encoded quantum graph state, thus enabling the practical QSS scheme in the small-scale complex quantum network. Legal participants are conveniently designated with the quantum route selection using the entanglement of the encoded graph states. Each participant holds a vertex of the graph state so that legal participants are selected through performing operations on specific vertices. The Chinese remainder theorem (CRT) strengthens the security of the recovering process of the initial secret among the legal participants. The security is ensured by the entanglement of the encoded graph states that are cooperatively prepared and shared by legal users beforehand with the sub-secrets embedded in the CRT over finite fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blakley, G.: Safeguarding cryptographic keys. In: Proceedings of AFIPS the National Computer Conference, vol. 48, pp. 313–317 (1979)

  3. Guo, Y., Lee, M., Zeng, G.: Large-capability quantum key distribution with entangled qutrits. Opt. Commun. 281(14), 3938–3942 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Yang, F., Shi, R., Guo, Y., Shi, J., Zeng, G.: Continuous-variable quantum key distribution under the local oscillator intensity attack with noiseless linear amplifier. Quantum Inf. Process. 14(8), 1–16 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Gong, L., Song, H., He, C., Liu, Y., Zhou, N.: A continuous variable quantum deterministic key distribution based on two-mode squeezed states. Phys. Scr. 89(89), 240–240 (2014)

    Google Scholar 

  6. Wang, Y., Xu, K., Guo, Y.: A chaos-based arbitrated quantum signature scheme in quantum crypotosystem. Int. J. Theor. Phys. 53(1), 28–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zeng, G., Lee, M., Guo, Y., He, G.: Continuous variable quantum signature algorithm. Int. J. Quantum Inf. 5(4), 553–573 (2007)

    Article  MATH  Google Scholar 

  8. Zhang, Y., Li, C., Guo, G.: Quantum authentication using entangled state. arXiv preprint quant-ph/0008044 (2000)

  9. Hillery, M., Buzk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cleve, R., Gottesman, D., Lo, H.: How to share a quantum secret. Phys. Rev. A 83(3), 648–651 (1999)

    ADS  Google Scholar 

  11. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 192–193 (2000)

    Article  MathSciNet  Google Scholar 

  12. Shi, R., Lv, G., Wang, Y., Huang, D., Guo, Y.: On quantum secret sharing via Chinese remainder theorem with the non-maximally entanglement state analysis. Int. J. Theor. Phys. 52(2), 539–548 (2013)

    Article  MATH  Google Scholar 

  13. Guo, Y., Huang, D., Zeng, G., Lee, M.: Multiparty quantum secret sharing of quantum states using entanglement states. Chin. Phys. Lett. 25(1), 16 (2008)

    Article  ADS  Google Scholar 

  14. Guo, Y., Zeng, G., Chen, Z.: Multiparty quantum secret sharing of quantum states with quantum registers. Chin. Phys. Lett. 24(4), 863 (2007)

    Article  ADS  Google Scholar 

  15. Wang, J., Zhang, Q., Tang, C.: Multiparty quantum secret sharing of secure direct communication using teleportation. Commun. Theor. Phys. 47(3), 454–458 (2007)

    Article  ADS  Google Scholar 

  16. Yang, C., Gea-Banacloche, J.: Teleportation of rotations and receiver-encoded secret sharing. J. Opt. B: Quantum Semiclass. Opt. 3(6), 407–411 (2001)

    Article  ADS  Google Scholar 

  17. Huang, D., Chen, Z., Guo, Y.: Multiparty quantum secret sharing using quantum Fourier transform. Commun. Theor. Phys. 51(2), 221 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Tyc, T., Sanders, B.: How to share a continuous-variable quantum secret by optical interferometry. Phys. Rev. A 65(4), 042310 (2002)

  19. Zhou, N., Song, H., Gong, L.: Continuous variable quantum secret sharing via quantum teleportation. Int. J. Theor. Phys. 52(11), 4174–4184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001)

    Article  ADS  Google Scholar 

  21. Hein, M., Eisert, J., Briegel, H.: Multi-party entanglement in graph states. Phys. Rev. A 69(6), 666–670 (2003)

    MathSciNet  Google Scholar 

  22. Markham, D., Sanders, B.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 144–144 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keet, A., Fortescue, B., Markham, D., Sanders, B.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82(6), 4229–4231 (2010)

    Article  Google Scholar 

  24. Javelle, J., Mhalla, M., Perdrix, S.: New protocols and lower bound for quantum secret sharing with graph states. Lect. Notes Comput. Sci. 7582, 1–12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gravier, S., Javelle, J., Mhalla, M., Perdrix, S.: Quantum Secret Sharing with Graph States. Lect. Notes Comput. Sci. 7721, 15–31 (2013)

    Article  MATH  Google Scholar 

  26. Sarvepalli, P.: Non-threshold quantum secret sharing schemes in the graph state formalism. Phys. Rev. A 86(4), 042303 (2012)

  27. Wu, Y., Cai, R., He, G., Zhang, J.: Quantum secret sharing with continuous variable graph state. Quantum Inf. Process. 13(5), 1085–1102 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Bell, B., Markham, D., Herrera-Marti, D., Marin, A., Wadsworth, W., Rarity, J., Tame, M.: Experimental demonstration of graph-state quantum secret sharing. Nat. Commun. 5, 5480–5480 (2014)

    Article  ADS  Google Scholar 

  29. Kondracki, A.: The Chinese remainder theorem. Formaliz. Math. 6(4), 573–577 (1997)

    Google Scholar 

  30. Hein, M., Dur, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.: Entanglement in graph states and its applications. eprint arXiv:quant-ph/0602096 (2006)

  31. Glynn, D.: On self-dual quantum codes and graphs. Submitted to the Electronic Journal of Combinatorics (2002)

  32. Nest, M., Dehaene, J., Moor, B.: Efficient algorithm to recognize the local Clifford equivalence of graph states. Phys. Rev. A At. Mol. Opt. Phys. 70(3), 423–433 (2004)

    Google Scholar 

  33. Ding, C., Pei, D., Salomaa, A.: Chinese remainder theorem: Applications in computing, coding, cryptography. World Scientific (1996)

  34. Wu, C., Hong, J., Wu, C.: RSA cryptosystem design based on the chinese remainder theorem. In: ASP-DAC 01 Proceedings of the 2001 Asia and South Pacific Design Automation Conference, pp. 391–395 (2001)

  35. Shyu, S., Chen, Y.: Threshold secret image sharing by Chinese remainder theorem. In: 2008 IEEE Asia-Pacific Services Computing ConferenceIEEE Computer Society, pp. 1332–1337 (2008)

  36. Guo, C., Chang, C.: General threshold signature based on the chinese remainder theorem. In: Intelligent Information Hiding and Multimedia Signal Processing, International Conference on IEEE, pp. 244–247 (2001)

  37. Shi, R., Su, Q., Guo, Y., Lee, M.: Quantum secret sharing based on chinese remainder theorem. Commun. Theor. Phys. 55(4), 573–578 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Shi, R., Kang, Y., Zhang, Z.: Quantum secret sharing based on chinese remainder theorem in hyperchaotic system. In: Cyberspace Safety and Security and Springer International Publishing, pp. 417–428 (2013)

  39. Guo, Y., Zhao, Y.: High-efficient quantum secret sharing based on the Chinese remainder theorem via the orbital angular momentum entanglement analysis. Quantum Inf. Process. 12(2), 1125–1139 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61379153, 61572529), and partly by China Postdoctoral Science Foundation (Grant Nos. 2013M542119, 2014T70772), Science and Technology Planning Project of Hunan Province, China (Grant No. 2015RS4032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Luo, P. & Wang, Y. Graph State-Based Quantum Secret Sharing with the Chinese Remainder Theorem. Int J Theor Phys 55, 4936–4950 (2016). https://doi.org/10.1007/s10773-016-3118-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3118-4

Keywords

Navigation