Skip to main content
Log in

State Ensembles and Quantum Entropy

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper considers quantum communication involving an ensemble of states. Apart from the von Neumann entropy, it considers other measures one of which may be useful in obtaining information about an unknown pure state and another that may be useful in quantum games. It is shown that under certain conditions in a two-party quantum game, the receiver of the states can increase the entropy by adding another pure state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Neumann, V.J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

  2. Petz, D.: Entropy, von Neumann and the von Neumann entropy. In: Redei, M., Stoltzner, M. (eds.) John von Neumann and the Foundations of Quantum Physics, Kluwer (2001)

  3. Kak, S., Chatterjee, A.: On decimal sequences. IEEE Trans. Information Theory IT-27, 647–652 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Savage, L.J.: On rereading R. A. Fisher. Ann. Stat. 4(3), 441–500 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rényi, A.: On measures of information and entropy. In: Proceedings of the fourth Berkeley Symposium on Mathematics, Statistics and Probability 1960, pp 547–561 (1961)

  6. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Licata, I., Fiscaletti, D.: Quantum Potential: Physics, Geometry and Algebra. Springer (2014)

  8. Licata, I., Fiscaletti, D.: A Fisher-Bohm geometry for quantum information. EJTP 11, 71–88 (2014)

    MATH  Google Scholar 

  9. Wheeler, J.: It from bit. In: Proceedings 3rd International Symposium on Foundations of Quantum Mechanics, Tokyo (1989)

  10. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Informational derivation of quantum theory. Phys. Rev. A 84, 012311 (2011)

    Article  ADS  Google Scholar 

  11. Leifer, M.S., Spekkens, R.W.: Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A 88, 052130 (2013)

    Article  ADS  Google Scholar 

  12. Timpson, C.: Quantum information theory and the foundations of quantum mechanics. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  13. Vedral, V.: Decoding reality: The universe as quantum information. Oxford University Press (2010)

  14. Vachaspati, T., Stojkovic, D., Krauss, L.: Observation of incipient black holes and the information loss problem. Phys. Rev. D 76, 24005 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Kak, S.: The initialization problem in quantum computing. Found. Phys. 29, 267–279 (1999)

    Article  MathSciNet  Google Scholar 

  16. Kak, S.: A three-stage quantum cryptography protocol. Found. Phys. Lett. 19, 293–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Landauer, R.: The physical nature of information. Phys. Lett. A 217, 188–193 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inf. Transm. 9, 177–183 (1973)

    MathSciNet  Google Scholar 

  19. Holevo, A.S.: Coding theorems for quantum channels. arXiv:quant-ph/9809023 (1973)

  20. Penrose, R.: The road to reality. Vintage Books (2004)

  21. Kak, S.: Quantum information and entropy. Int. J. Theor. Phys. 46, 860–876 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kak, S.: Measurement complexity and oracle quantum computing. NeuroQuantology 12, 374–381 (2014)

    Article  Google Scholar 

  23. Massar, S., Popescu, S.: Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74 (1995)

  24. Bagan, E., Baig, M., Muñoz-Tapia, R.: Optimal scheme for estimating a pure qubit state via local measurements. Phys. Rev. Lett. 89 (2002)

  25. Dicke, R.H.: Interaction-free quantum measurements: A paradox?. Am. J. Phys. 49, 925 (1981)

    Article  ADS  Google Scholar 

  26. Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23, 987–97 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I am thankful to Kam Wai C. Chan for his comments on an earlier version of the paper. I am also thankful to the National Science Foundation for its support through grant #1117068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Kak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kak, S. State Ensembles and Quantum Entropy. Int J Theor Phys 55, 3017–3026 (2016). https://doi.org/10.1007/s10773-016-2934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-2934-x

Keywords

Navigation