Skip to main content
Log in

Vector Gauge Boson Dark Matter for the SU(N) Gauge Group Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The existence of dark matter is explained by a new neutral vector boson, C-boson, of mass (900 GeV), predicted by the Wu mechanisms for mass generation of gauge field. According to the Standard Model (SM) W, Z-bosons normally get their masses through coupling with the SM Higgs particle of mass 125 GeV. We compute the self-annihilation cross section of the vector gauge boson C-dark matter and calculate its relic abundance. We also study the constraints suggested by dark-matter direct-search experiments. The problem on the stability of C-particle is left as an open question for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zwicky, F.: Helv. Phys. Acta 6, 110 (1933)

    ADS  Google Scholar 

  2. Benakli, K., Elis, J., Nanopoulos, D.: Phys. Rev. D 59, 047301 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  3. Lopez, J.L., Nanopoulos, D.V.: Lecture at the 33rd International School of Subnuclear Physics “Vacuum and vacua: the physics of nothing”, Erice, July 2–10 (1995). hep-ph/9511266

  4. Gaillard, M.K.: Phys. Rev. Lett. 94, 141601 (2005). doi:10.1103/PhysRevLett.94.141601

    Article  MathSciNet  ADS  Google Scholar 

  5. de Carlos, B., et al.: Phys. Lett. B 318, 447 (1993)

    Article  ADS  Google Scholar 

  6. Chang, S., Coriano, C., Faraggi, A.E.: Nucl. Phys. B 477, 65 (1996)

    Article  ADS  Google Scholar 

  7. Benakli, K., Ellis, J.R., Nanopoulos, D.V.: Phys. Rev. D 59, 047301 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  8. Ellwanger, U., Mitropoulos, P.: J. Cosmol. Astropart. Phys. 1207, 024 (2012). doi:10.1088/1475-7516/2012/07/024

    Article  ADS  Google Scholar 

  9. Das, D., Ellwanger, U., Mitropoulos, P.: J. Cosmol. Astropart. Phys. 1208, 003 (2012). doi:10.1088/14757516/2012/08/003

    Article  ADS  Google Scholar 

  10. Kaluza, T.: Sitz.ber. Preuss. Akad. Wiss Berl. Math.-Phys. Kl. 966 (1921)

  11. Roy, P.: ICNAPP:0225-237 (1994). hep-ph/9501209

  12. Kusenko, A., et al.: Phys. Rev. Lett. 80, 3185 (1998). hep-ph/9712212

    Article  ADS  Google Scholar 

  13. Kusenko, A., Shaposhnikov, M.E.: Phys. Lett. B 418, 46 (1998). hep-ph/9709492

    Article  ADS  Google Scholar 

  14. Foot, R.: Phys. Rev. D 69, 036001 (2004). hep-ph/0308254

    Article  ADS  Google Scholar 

  15. Foot, R., Silagadze, Z.K.: Int. J. Mod. Phys. D 14, 143–152 (2005). doi:10.1142/S0218271805006523

    Article  ADS  MATH  Google Scholar 

  16. Hodges, H.M.: Phys. Rev. D 47, 456 (1993)

    Article  ADS  Google Scholar 

  17. Ignatiev, A.Y., Volkas, R.R.: Phys. Rev. D 68, 023518 (2003). hep-ph/0304260

    Article  ADS  Google Scholar 

  18. Mohapatra, R.N., Nussinov, S., Teplitz, V.L.: Phys. Rev. D 66, 063002 (2002). hep-ph/0111381

    Article  ADS  Google Scholar 

  19. Wilczek, F.: Phys. Rev. Lett. 58, 1799 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  20. Rosenberg, L.J., van Bibber, K.A.: Phys. Rep. 325, 1 (2000)

    Article  ADS  Google Scholar 

  21. Akama, K.: In: Gauge Theory and Gravitation, Nara, Japan, 1982 (1982)

    Google Scholar 

  22. Rubakov, V.A., Shaposhnikov, M.E.: Phys. Lett. B 125, 136 (1983)

    Article  ADS  Google Scholar 

  23. Rubakov, V.A., Shaposhnikov, M.E.: Phys. Lett. B 125, 139 (1983)

    Article  ADS  Google Scholar 

  24. Visser, M.: Phys. Lett. B 159, 22 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  25. Gibbons, G.W., Wiltshire, D.L.: Nucl. Phys. B 287, 717 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  26. Arkani-Hamed, N., Dimopoulos, S., Dvali, Gv.: Phys. Lett. B 429, 263 (1998)

    Article  ADS  Google Scholar 

  27. Antoniadis, I.N.: Phys. Lett. B 436, 257 (1998)

    Article  ADS  Google Scholar 

  28. Gogberashvili, M.: Int. J. Mod. Phys. D 11, 1635 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  29. Gogberashvili, M.: Int. J. Mod. Phys. D 11, 1639 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Gogberashvili, M.: Europhys. Lett. 49, 396 (2000)

    Article  ADS  Google Scholar 

  31. Gogberashvili, M.: Mod. Phys. Lett. A 14, 2025 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  32. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 4690 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Shiu, G., Wang, L.T.: Phys. Rev. D 69, 126007 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  35. Chacko, Z., et al.: J. High Energy Phys. 0001 (2000)

  36. Appelquist, T., Cheng, H.C., Dobrescu, B.A.: Phys. Rev. D 64, 035002 (2001)

    Article  ADS  Google Scholar 

  37. Servant, G., Tait, T.: Nucl. Phys. B 650, 391 (2003)

    Article  ADS  Google Scholar 

  38. Cherg, H., Feng, J., Mactcher, K.: Phys. Lett. B 514, 309 (2001)

    Article  Google Scholar 

  39. Kolb, E.W., Slansky, R.: Phys. Lett. B 135, 378 (1984)

    Article  ADS  Google Scholar 

  40. Diaz-Cruz, J.L., Ma, E.: Phys. Lett. B 695, 264 (2011)

    Article  ADS  Google Scholar 

  41. London, D., Rosner, J.L.: Phys. Rev. D 34, 1530 (1986)

    Article  ADS  Google Scholar 

  42. Bhattacharya, S., et al.: Phys. Rev. D 85, 055008 (2012). doi:10.1103/PhysRevD.85.055008

    Article  ADS  Google Scholar 

  43. Ma, E., Wudka, J.: (2012, preprint). 1202.3098 [hep-ph]

  44. Brumfiel, G.: Nature (2012). doi:10.1038/nature10940

    Google Scholar 

  45. Evans, L.: Phil. Trans. R. Soc. A 370, 831–858 (2012). doi:10.1098/rsta.2011.0453

    Article  ADS  MATH  Google Scholar 

  46. Wu, N.: Commun. Theor. Phys. 36, 169 (2001)

    Google Scholar 

  47. Wu, N.: hep-ph/9802236

  48. Wu, N.: hep-ph/9802237

  49. Wu, N.: hep-ph/9805453

  50. Koorambas, E.: Commun. Theor. Phys. 57(2), 241–244 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Koorambas, E.: In: Tremblay, I. (ed.) Recent Developments in Bosons Research, pp. 57–82. Nova Science Publishers, New York (2013). Chap. 2

    Google Scholar 

  52. Koorambas, E.: Int. J. Theor. Phys. 52(7), 2235–2244 (2013). doi:10.1007/s10773-013-1499-1

    Article  MathSciNet  Google Scholar 

  53. Koorambas, E.: Int. J. Theor. Phys. 51(10), 3127–3140 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Weinberg, S.: Phys. Rev. Lett. 19, 1264 (1976)

    Article  ADS  Google Scholar 

  55. Weinberg, S.: Phys. Rev. D 5, 1412 (1972)

    Article  ADS  Google Scholar 

  56. Salam, A.: In: Svartholm, N. (ed.) Elementary Particle Theory: Relativistic Groups and Analyticity Nobel Symposium, vol. 8. Almqvist & Wiksell, Stockholm (1968)

    Google Scholar 

  57. Glashow, S.: Nucl. Phys. 22, 579 (1961)

    Article  Google Scholar 

  58. Higgs, P.W.: Phys. Lett. 12, 13218 (1964)

    Google Scholar 

  59. Kuzmenko, T.Yu.: In: Proceedings of Institute of Mathematics of NAS of Ukraine 2000, vol. 30, pp. 501–506 (2000). Part 2

    Google Scholar 

  60. Weinberg, S.: The Quantum Theory of Field, vol. 2, pp. 2–5. Cambridge University Press, Cambridge (1996). 308–309

    Book  Google Scholar 

  61. Kolb, E.W., Turner, M.S.: In: Frontiers in Physics, vol. 69. Addison-Wesley, Redwood City (1990). 547 p.

    Google Scholar 

  62. Griest, K., Seckel, D.: Three exceptions in the calculation of relic abundances. Phys. Rev. D 43, 3191 (1991)

    Article  ADS  Google Scholar 

  63. Jungman, G., Kamionkowski, M., Griest, K.: Phys. Rep. 267, 195 (1996). arXiv:hep-ph/9506380

    Article  ADS  Google Scholar 

  64. Steigman, G.: Int. J. Mod. Phys. E 15, 1 (2006). astro-ph/0511534

    Article  ADS  Google Scholar 

  65. Jungman, G., Kamionkowski, M., Griest, K.: Phys. Rep. 267, 195 (1996). hep-ph/9506380

    Article  ADS  Google Scholar 

  66. Bergstrom, L.: Rep. Prog. Phys. 63, 793 (2000). hep-ph/0002126

    Article  ADS  Google Scholar 

  67. Hambye, T.: (2010). arXiv:1012.4587 [hep-ph]

  68. Hambye, T.: J. High Energy Phys. 01, 028 (2009)

    Article  ADS  Google Scholar 

  69. Hambye, T., Tytgat, M.H.G.: Phys. Lett. B 683, 39 (2010)

    Article  ADS  Google Scholar 

  70. Arina, C., Hambye, T., Ibarra, A., Weniger, C.: J. Cosmol. Astropart. Phys. 1003, 024 (2010)

    Article  ADS  Google Scholar 

  71. Hisano, J., et al.: arXiv:1012.5455 [hep-ph]

  72. Politzer, H.D.: Nucl. Phys. B 172, 349 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  73. Ahmed, Z., et al.: Science 327, 1619 (2010)

    Article  ADS  Google Scholar 

  74. Khalil, S., Lee, H.-S., Ma, E.: Phys. Rev. D 81, 051702 (2010)

    Article  ADS  Google Scholar 

  75. Hisano, J., et al.: Prog. Theor. Phys. 126, 435 (2011)

    Article  ADS  MATH  Google Scholar 

  76. Aprile, E., et al.: Phys. Rev. Lett. 107, 131302 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Koorambas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koorambas, E. Vector Gauge Boson Dark Matter for the SU(N) Gauge Group Model. Int J Theor Phys 52, 4374–4388 (2013). https://doi.org/10.1007/s10773-013-1756-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1756-3

Keywords

Navigation