Skip to main content
Log in

Dynamics of Quantum Discord of Two-Qubit Coupled with a Vacuum Cavity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamical behaviors of quantum discord between two atoms coupled with a vacuum cavity are investigated. If the two qubits are initially prepared in two extended Werner-like states, the quantum discord and entanglement can be numerically calculated. There are remarkable differences between the time evolutions of the quantum discord and entanglement under the same conditions. These results imply that quantum discord is not zero for some unentangled states and in some regions entanglement can disappear completely. A large amount of quantum discord exists between the two-qubit. Thus, the quantum discord is more robust than entanglement for the quantum system exposed to the environment. The quantum discord shows sudden change and its existence depends on the initial state of the system. This property of quantum discord may have important implications for experimental characterization of quantum phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H., Wiesener, S.J.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Yu, T., Eberly, J.H.: Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  6. Yönac, M., Yu, T., Eberly, J.H.: J. Phys. B 39, S621 (2006)

    Article  Google Scholar 

  7. Ficek, Z., Tanaś, R.: Phys. Rev. A 77, 054301 (2008)

    Article  ADS  Google Scholar 

  8. Bellomo, B., Lo Franco, R., Compagno, G.: Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  9. Al-Qasimi, A., James, D.F.V.: Phys. Rev. A 77, 012117 (2008)

    Article  ADS  Google Scholar 

  10. Zhang, G.F.: Chin. Phys. 16, 1855 (2007)

    Article  ADS  Google Scholar 

  11. Cui, H.T., Li, K., Yi, X.X.: Phys. Lett. A 365, 44 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  13. Datta, A., Shaji, A., Caves, C.M.: Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  14. Datta, A., Gharibian, S.: Phys. Rev. A 79, 042325 (2009)

    Article  ADS  Google Scholar 

  15. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  16. Datta, A., Flammia, S.T., Caves, C.M.: Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  17. Dillenschneider, R.: Phys. Rev. B 78, 224413 (2008)

    Article  ADS  Google Scholar 

  18. Sarandy, M.S.: Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  19. Werlang, T., Souza, S., Fanchini, F.F., Villas-Boas, C.J.: Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  20. Maziero, J., Celeri, L.C., Serra, R.M., Vedral, V.: Phys. Rev. A 80, 044102 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  21. Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Aciń, A.: Phys. Rev. A 81, 052318 (2010)

    Article  ADS  Google Scholar 

  22. Wang, B., Xu, Z.Y., Chen, Z.Q., Feng, M.: Phys. Rev. A 81, 014101 (2010)

    Article  ADS  Google Scholar 

  23. Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  24. Hao, X., Pan, T., Sha, J.Q., Zhu, S.Q.: Commun. Theor. Phys. 55, 41 (2011)

    Article  ADS  MATH  Google Scholar 

  25. Tavis, M., Cummings, F.W.: Phys. Rev. 170, 379 (1968)

    Article  ADS  Google Scholar 

  26. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  27. Kim, M.S., Leem, J., Ahn, D., Knight, P.L.: Phys. Rev. A 65, 040101 (2002)

    Article  ADS  Google Scholar 

  28. Bellomo, B., Lo Franco, R., Compagno, G.: Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  29. Werner, R.F.: Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Natural Science Foundation of China (Grant No. 11074184) and the Foundation for University Key Young Teacher of Henan Province (Grant No. 2009GGJS-163) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Xing Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, RH., Guo, ZY., Zhu, SQ. et al. Dynamics of Quantum Discord of Two-Qubit Coupled with a Vacuum Cavity. Int J Theor Phys 52, 1721–1728 (2013). https://doi.org/10.1007/s10773-012-1140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1140-8

Keywords

Navigation